Method and system for pre-programmed self-power microfluidic circuits

    公开(公告)号:US10690255B2

    公开(公告)日:2020-06-23

    申请号:US15785592

    申请日:2017-10-17

    Abstract: A major challenge for the general use of “lab-on-a-chip” (LOAC) systems and point-of-care (POC) devices has been the generally complex and need for sophisticated peripheral equipment, such that it is more difficult than anticipated to implement low cost, robust and portable LOAC/POC solutions. It would be beneficial for chemical, medical, healthcare, and environmental applications to provide designs for inexpensive LOAC/POC solutions compatible with miniaturization and mass production, and are potentially portable, using compact possibly hand-held instruments, using reusable or disposable detectors. Embodiments of the invention address improved circuit elements for self-powered self-regulating microfluidic circuits including programmable retention valves, programmable trigger valves, enhanced capillary pumps, and flow resonators. Additionally embodiments of the invention allow for the flow direction within a microfluidic circuit to be reversed as well as for retention of reagents prior to sale or deployment of the microfluidic circuit for eased user use.

    Finite element methods and systems
    45.
    发明授权

    公开(公告)号:US10394978B2

    公开(公告)日:2019-08-27

    申请号:US14526651

    申请日:2014-10-29

    Abstract: Herein provided are methods and systems for generating finite element modelling results. Finite element method (FEM) data relating to establish a FEM problem to be solved for a portion of a physical system being analyzed is received. A FEM mesh comprising at least FEM mesh node locations relating to the portion of the physical system is generated. FEM mesh values for each FEM mesh node location are automatically generated with a microprocessor. A factor graph model comprising a plurality of random variable nodes and a plurality of factor nodes is automatically generated with a microprocessor based upon the FEM mesh node locations. A set of belief propagation update rules are automatically executed upon the factor graph model using Gaussian function parametrization and the FEM mesh values. The belief propagation update rules are iteratively executed until a predetermined condition has been met.

    High efficiency visible and ultraviolet nanowire emitters

    公开(公告)号:US10290767B2

    公开(公告)日:2019-05-14

    申请号:US15177608

    申请日:2016-06-09

    Abstract: GaN-based nanowire heterostructures have been intensively studied for applications in light emitting diodes (LEDs), lasers, solar cells and solar fuel devices. Surface charge properties play a dominant role on the device performance and have been addressed within the prior art by use of a relatively thick large bandgap AlGaN shell covering the surfaces of axial InGaN nanowire LED heterostructures has been explored and shown substantial promise in reducing surface recombination leading to improved carrier injection efficiency and output power. However, these lead to increased complexity in device design, growth and fabrication processes thereby reducing yield/performance and increasing costs for devices. Accordingly, there are taught self-organizing InGaN/AlGaN core-shell quaternary nanowire heterostructures wherein the In-rich core and Al-rich shell spontaneously form during the growth process.

Patent Agency Ranking