Abstract:
Described herein are adhesive nasal devices. In particular, the adhesive nasal respiratory devices described herein are configured to be worn in communication with a subject's nasal cavity and may include a rim body having a passageway therethrough, an airflow resistor in communication with the passageway of the rim body, and a flexible, adhesive holdfast layer extending outward from the periphery of the rim body. The rim body region may be formed from multiple parts (e.g., a first and a second rim body region), and the airflow resistor may be secured between the parts forming the rim body. Methods of manufacturing and assembling these adhesive nasal devices are also described.
Abstract:
Bymixer devices and methods for sampling or obtaining data from mixed respiratory gases in a ventilation circuit. Respiratory gasses from a plurality of consecutive breaths become mixed within a mixing chamber of the bymixer and samples or data are obtained from such mixed respiratory gasses. Optionally, the volume of the mixing chamber and/or the resistance to flow into or through the mixing chamber may be selectable or adjustable.
Abstract:
Fluid regulators provide a fluid to a cannula for use by a person. Fluid conservers also a fluid to a cannula for use by a person. A fluid conserver may be operational in a continuous flow mode of operation and an intermittent flow mode of operation. The selection of either the continuous flow mode of operation and the intermittent flow mode of operation may be based on a position of a flow selector. A home fill device may operate with a fluid conserver and may include an oxygen concentrator which provides a source of fluid.
Abstract:
A therapeutic device (1) for improving the respiration of a patient, with a curved or bent pipe section (2) and a mouthpiece (6) inserted in its first end (3) is intended to provide an easy-to-handle medicinal device (1) by means of which diseases of the airway can be treated or the pulmonary volume as well as the pulmonary inhalation performance of a patient can be improved.This is achieved in that a holding peg (11) firmly connected to the pipe section (2) can be pushed into the second end (4) of the pipe section (2), and a passage channel (12) is worked into the holding peg (11) which penetrates the inside of the pipe section (2) completely or in part, and that the holding peg (11) has a flexible hose (13) attached to it which runs inside the pipe section (2) and the free end (24) of which can move freely in the area of the mouthpiece (6) between the inner wall (5) of the pipe section (2).
Abstract:
The present invention discloses a method for improving control and detection precision of tidal volume by introducing R value, comprising the steps of: a plateau pressure Pplate is used to calculate a system compliance C with C=ΔV/(Pplate−PEEP); VT, the tidal volume obtained currently at patient terminal, is calculated with VT=ΔV×(C−Ctube)/C, wherein ΔV is the variation of tidal volume, PEEP is the positive end expiratory pressure and Ctube is the compliance C of the line. Depending on the calculated VT, the tidal volume which is actually obtained by the patients during this period, the processing unit calculates the tidal volume VT′, which the airway is intended to reach during the next expiration period, by VT′=VT+ΔVT×K wherein K is a scaling factor for control and adjustment, VT is the tidal volume obtained by the patient during the current period, VTset is the presetted tidal volume, ΔVT=VTset−VT. And the processing unit accordingly controls the opening position of the inspiratory valve during the next inspiration period, so as to achieve the purpose of improving control and detection of precision tidal volume.
Abstract:
A device for monitoring respiration comprises a duct, a flow restricting element in the duct, and a pressure sensor arranged in the duct. The pressure sensor measures a pressure drop across the flow restricting element as a pressure difference between a pressure at a location in the duct on a first side of the flow restricting element and a substantially constant pressure on a second side of the flow restricting element opposite the first side.
Abstract:
Described herein are nasal devices. In particular, layered nasal respiratory devices are described. Layered nasal device may include a layered airflow resistor that is configured to resist airflow in a first direction more than airflow in a second direction and that includes a flap valve adjacent to a flap valve limiting layer and an adhesive holdfast layer that is configured to secure the layered airflow resistor in communication with the subject's nasal cavity. Methods of using and methods of assembling layered nasal device are also described.
Abstract:
A high frequency pressure oscillation device that selective restricts the flow of breathing gas to or from a patient to produce pressure spikes in the patient's airway that facilitate clearing secretions from the patient's airway. The device includes a patient circuit that defines a closed path between a source of breathing gas and the patient's airway. A valve is disposed in the patient circuit such that in an open position the path between the source of breathing gas and the airway of the patient is substantially unobstructed. When the valve is in a closed position, the path between the source of breathing gas and the patient's airway is at least partially obstructed to create the pressure spikes. An actuating system associated with the valve alternatively places the valve in the open position and in the closed position at a predetermined oscillation rate that is independent of patient effort.
Abstract:
Medicine delivery interface for delivery of therapeutic aerosols or gases, including at least one hollow body having at least one nasal aperture defined therein at least one nasal insert tube associated with each nasal aperture of the hollow body is capable of being inserted into a nostril. The interface also may include at least one exhaust aperture having at least one exhaust valve configured to exhaust exhaled gases and configured to block inflow of air through the exhaust aperture and at least one intake aperture.
Abstract:
A flow diverter valve is used in controlling the pressure and/or flow rate of a breathable gas supplied to the airways of a patient by a breathable gas flow generator supply apparatus during, for example, ventilatory assistance treatments such as non-invasive positive pressure ventilation and nasal Continuous Positive Airway Pressure (CPAP) treatment of Obstructive Sleep Apnea. The flow diverter valve includes a vane and a housing. The housing has an inlet port, an outlet port, and an exhaust port. The exhaust port opens to atmosphere, and the inlet port is in fluid communication with the flow generator. The outlet port is in fluid communication with a patient mask via a conduit. The vane is configured with respect to the housing such that a blower associated with the CPAP apparatus remains substantially unchoked, regardless of whether the vane is in the open or closed position.