Abstract:
Disclosed is an electronic brake system. The electronic brake system includes a master cylinder connected to a reservoir in which brake fluid is stored and configured to discharge the brake fluid according to a pedal effort of a brake pedal, the master cylinder including first and second master chambers and first and second pistons provided in the master chambers; a hydraulic pressure supply device activated by an electrical signal to generate a hydraulic pressure; a hydraulic pressure control unit configured to transfer, to a plurality of wheel cylinder provided in wheels, a hydraulic pressure discharged from the hydraulic pressure supply device; first and second backup flow paths configured to connect the first and second master chambers to the hydraulic pressure control unit; and first and second cut valves configured to selectively open and close the first and second backup flow paths, wherein one or both of the first backup flow path and the second backup flow path are connected to the first or second master chamber and any one of the plurality of wheel cylinders.
Abstract:
A vehicle includes a fault-tolerant braking system that controls a brake assembly which is configured to adjust a braking force applied to one or more wheels. The fault-tolerant braking system further includes a brake-by-wire (BBW) system and a vehicle control module (VCM). The BBW system is configured to control the brake assembly in response to a braking request. The VCM is configured to detect a fault of at least one of the brake assembly and the BBW system. In response to detecting the fault, the VCM selectively operates the vehicle between a normal operating mode and at least one degraded driving mode that limits operation of at least one of the vehicle engine and the vehicle transmission compared to the normal operating mode.
Abstract:
A vehicle includes a brake pedal, a master cylinder, a braking circuit with a wheel cylinder, and a brake pressure generator with strokable piston. A pedal feel simulator is coupled to the master cylinder through a switchable valve, the simulator providing a reaction force. An isolation valve closes to isolate the braking circuit from the master cylinder and the simulator circuit. A controller is programmed to place the simulator in fluid communication with an output of the brake pressure generator, and to stroke the piston at a designated diagnostic time. The resulting pressure increase is observed, and the controller checks whether the pressure-increase to piston-stroke relationship is within a predetermined acceptable range for continued operation of a brake-by-wire mode in which the master cylinder is coupled to the simulator circuit and decoupled from the braking circuit.
Abstract:
Provided is a brake device capable of detecting abnormality condition of a subject valve without using a wheel pressure sensor and the vehicle brake device includes a valve which is configured to open and close a fluid passage connected to the master chamber and at the same time which is a subject valve for a subject of failure judgement and an abnormality judging portion which is configured to judge whether or not the subject valve is in an abnormal state based on an advancement amount of the master piston accompanying an opening of the subject valve.
Abstract:
A brake pedal assembly of a brake-by-wire system of a vehicle includes a support structure, a brake pedal pivotally engaged to the support structure at a first pivot axis, and a brake pedal emulator assembly. The brake pedal emulator assembly extends between and is pivotally engaged to the brake pedal and the support structure at respective second and third pivot axis. The brake pedal emulator assembly includes a brake pedal emulator and an adjustment mechanism aligned along a centerline intersecting the second and third pivot axis. The brake pedal emulator is constructed and arranged to displace axially when the brake pedal is actuated, and the adjustment mechanism is constructed and arranged to adjust axial displacement.
Abstract:
A method for operating a braking assistance system of a vehicle, wherein the braking assistance system assists a braking of the vehicle by a vehicle braking device in the event of a hazard braking. To differentiate between the hazard braking and a normal braking, at least two variables, representing a braking demand of a driver of the vehicle, are ascertained and a threshold value is established for each variable wherein hazard braking is recognized when at least the two variables exceed their particular threshold value, whereupon an automated braking intervention by the braking assistance system is initiated with the aid of the vehicle braking device. Furthermore, at least one driving-situation variable representing the instantaneous driving situation of the vehicle is ascertained and the at least two threshold values are changed depending on the at least one driving-situation variable.
Abstract:
A leakage inspecting method of an electric brake system, which includes a master cylinder connected to a reservoir, a simulation device having one side connected to the master cylinder to provide a reaction force according to the pedal effort of the brake pedal, a simulation valve provided at a flow path connected to the master cylinder or a flow path connected to the reservoir, a hydraulic pressure supply device operated by an electrical signal of a pedal displacement sensor sensing a displacement of the brake pedal and configured to generate hydraulic pressure, and a hydraulic pressure control unit, comprising: executing an inspection mode for inspecting for a leak of the simulation valve and a sealing member provided inside a chamber of the master cylinder by providing an inspection valve at a flow path connecting the master cylinder to the reservoir, wherein the inspection mode includes: (a1) closing a cut valve provided at a flow path connecting the master cylinder to the hydraulic pressure control unit when the inspection valve is open; (b1) pressurizing a piston disposed inside the master cylinder according to the pedal effort of the brake pedal and detecting whether pressure is formed through a pressure sensor; and (c1) determining that a leak does not exist when pressure detected through the pressure sensor satisfies a preset criterion.
Abstract:
An electro-hydraulic brake system may include a brake input device manipulated by a driver to brake a vehicle, a brake input detecting sensor configured to detect a brake input value of the driver through the brake input device, a pressure generating device configured to generate a brake hydraulic pressure, a wheel cylinder configured to receive the brake hydraulic pressure generated from the pressure generating device and to generate braking power for braking rotations of each vehicle wheel, a hydraulic pressure supply line connected between the pressure generating device and the wheel cylinder to transfer the brake hydraulic pressure generated from the pressure generating device to each wheel cylinder, and a controller configured to output a control signal for controlling an operation of the pressure generating device to allow the pressure generating device to generate a target brake hydraulic pressure based on a signal of the brake input detecting sensor.
Abstract:
The invention relates to a brake device and a method for operating a brake device, wherein said brake device comprises an actuation device, also a booster device, in particular having an electro-hydraulic drive, a piston cylinder device (main cylinder) in order to supply hydraulic pressure medium to the brake circuits, a valve device for controlling or regulating the supply of the pressure medium and an electronic control or regulating device (ECU). According to the invention provision is made for additional pressure medium volume to be supplied in a controlled manner to at least one brake circuit by means of a further piston cylinder device, in particular a double stroke piston (10) and at least one valve (AS) controlled by the control or regulating device (ECU).
Abstract:
First main and second hydraulic pressure paths, master cut valves configured to open and close the first and second main hydraulic pressure paths, respectively, a slave cylinder that operates in accordance with an operation amount of a brake operator, a first communication path that communicates from the slave cylinder to the first main hydraulic pressure path, and a second communication path that communicates from the slave cylinder to the second main hydraulic pressure path are provided. The slave cylinder includes a single hydraulic pressure chamber. The slave cylinder communicates with the first and second communication paths through a common flow path connected to the hydraulic pressure chamber. The slave cylinder is configured to be able to increase a pressure on a downstream side of the first or second main hydraulic pressure path. An on-off valve is provided in at least one of the first and second communication paths.