Abstract:
A device includes an array of single photon avalanche diodes (SPADs) and a plurality of pulse shapers. Each of the SPADs are electrically coupled to a respective SPAD quench circuit. Each of the pulse shapers have an input electrically coupled to an output of a respective SPAD quench circuit.
Abstract:
An image sensor with an array of pixels is provided. In order to achieve high image quality, it may be desirable to improve well capacity of individual pixels within the array by forming deep photodiodes in a thick substrate. When forming the array of pixels, conductive contacts may be formed in a back surface of the substrate opposing ground contacts located on a front side of the substrate. A conductive grid layer may be formed over the conductive contacts. A color filter layer may be formed over the conductive grid layer that may include a barrier grid in which color filter material is deposited. The conductive grid layer and conductive contacts may be biased to a voltage to improve the strength of electric fields in the substrate. Conductive contacts will thereby improve charge collection and electrical isolation and prevent electrical crosstalk and blooming.
Abstract:
An image sensor includes a light receiving section suitable for generating photocharges corresponding to incident light, a first driving section suitable for transferring a first output voltage corresponding to a first voltage to a first column line based on the photocharges, a second driving section suitable for transferring a second output voltage corresponding to a second voltage to a second column line based on the photocharges, and an output section suitable for outputting an image signal based on the first and second output voltages.
Abstract:
The invention is directed to a method for measuring an internal thread of a workpiece with a coordinate measuring apparatus and a CCD or CMOS sensor. The sensor records at least two images of a section of the internal thread and the recording conditions for the two images are modified. The data from these two recorded images are used to establish the position, orientation, core diameter and/or the pitch of the internal thread. The invention is also directed to an arrangement for measuring an internal thread of a workpiece and includes a coordinate measuring apparatus and the CCD or CMOS sensor in accordance with the above method.
Abstract:
An optical device is described. The device has a sensor having a light incident side, wherein the sensor is designed to convert light that is incident upon the light incident side into an electrical signal. In one embodiment, the device further has at least one lens and a liquid crystal device which is arranged in front of the light incident side of the sensor in such a manner that the at least one lens is situated between the liquid crystal device and the sensor, wherein the liquid crystal device comprises at least one region whose light transmission is electronically controllable. There are further described an electronic device, a method of controlling an optical device, and a computer program.
Abstract:
A signal sampling circuit includes: a signal output unit configured to output a level signal to an output node in response to a control signal; a signal sampling unit coupled to the output node and configured to sample the level signal in a sampling period; a first current sinking unit configured to sink a constant current from the output node; and a second current sinking unit configured to sink a current from the output node after a time point where the control signal is deactivated.
Abstract:
A method is provided for setting up a photon counting detector, to enable it to carry out a centroiding procedure in which a photon event occurring in a given range is allocated to one of a plurality of channels into which the range is divided. The method comprises the steps of: a) sub-dividing the range into a plurality of channels of preferably equal width and loading the channel boundaries into a look-table; b) performing an integration on a flat field and allocating photon events to the channels defined in step a); c) counting the number of events allocated to each channel; d) altering the channel boundaries in directions tending to equalize the number of events allocated to each; and, optionally, e) repeating steps b), c) and d) until the variation between the number of events held by the channels is at an acceptable level.
Abstract:
Apparatus for producing decay time weighted information (e.g. a decay time weighted image) of a luminescent sample, comprises an excitation light source arranged to illuminate the sample, means for modulating or pulsing the intensity of the excitation light in a predetermined cyclical manner, detector means for detecting photons emitted by the sample as a result of luminescence, means for storing data representative of detected photons, the stored data being weighted as a function of phase difference between detection of photons and the cyclically varying modulation, and means for producing decay time weighted information from the stored data.
Abstract:
Information is received from an image on a moving substrate. Flash exposure is used, defining operating or exposure cycles. The reflection or a representation of the image is subdivided into a matrix having n columns and m rows or lines. The sensor is a charge coupled device (CCD), arranged to have a sensing area (11) with n columns and m rows or lines, and a storage region or section (12), likewise arranged to have storage cells of n and m columns and rows or lines. Information of any one image element, upon sensing, is shifted by a line transfer pulse by one image line. The line transfer pulses are synchronized with web movement of the substrate and operate as shift pulses. The m line, at the first transfer line shift pulse, is shifted into the first line or row of the matrix of the storage portion of the CCD. For each operating cycle, at least one line transfer pulse is used. The information of the image elements can be read out serially from the storage portion (12) at high speed. The storage portion of the CCD chip is protected against exposure to light.
Abstract:
Apparatus for quantitative analysis of a material sample, such as whole grain, as a function of optical characteristics thereof includes a light source and a solid state detector of silicon or other suitable construction. A material sample is positioned between the light source and the detector, and light energy is focused through the sample onto the detector at a plurality of preselected wavelengths in the near-infrared range of 800-1100 nm. Illumination wavelength is selectively controlled by an opaque disc having a central axis and a plurality of apertures around the periphery at uniform radius from the disc axis. A plurality of filter elements are carried by the disc over respective ones of the peripheral apertures and have transmission characteristics corresponding to the plurality of preselected wavelengths. The filter elements are carried in a continuous circumferential array around the disc periphery, with the array including at least one opaque section for chopping light energy incident on the detector. The disc is rotated about its axis in a continuous motion so that each filter element in turn intersects light energy transmitted through the sample. Analysis electronics is responsive to light energy incident on the detector at the plurality of preselected wavelengths to indicate a preselected characteristic of the material sample.