Abstract:
An improved printed circuit board contacts that are used to implement switch contacts of keypads and keyboards combining gold and silver plating over copper conductors. In the preferred embodiment of FIG. 5 shows a cross section of the printed circuit board 14 and the switch contact 20, where the switch contact material is electrolysis immersion silver layer 26 plated onto copper layer 22 and an electrolysis immersion gold layer 28 plated over that. An alternate embodiment is shown in FIG. 4 of a printed circuit board 14 with a switch contact 20, wherein a layer of nickel 24 is plated over the copper layer 22, then the silver layer 26 is plated onto the nickel 24, then the gold layer 28 is the topmost layer. Here the nickel layer is used to prevent copper migration into the other layers.
Abstract:
An electrical contact area on a printed circuit board (“PCB”), that would otherwise be subject to abrasion and possibly also corrosion, can be protected by covering it with another, more durable contact structure that is bonded to the first-mentioned contact area using an anistropic conductive adhesive (“ACA”). The more durable contact structure may include a member of PCB material or the like with electrically connected electrical contacts on its upper and lower surfaces. At least the upper one of these contacts (which is exposed for the service that involves possible abrasion and/or corrosion) may be given high durability by plating it with hard gold. The lower of these contacts is adhered to the main PCB via the above-mentioned ACA.
Abstract:
An electrical contact comprising a silver-coated stainless steel strip, which has an underlying layer comprising any one of nickel, cobalt, nickel alloys, and cobalt alloys, on at least a part of the surface of a stainless steel substrate, and has a silver or silver alloy layer formed as an upper layer, in which a copper or copper alloy layer with a thickness of 0.05 to 2.0 μm is provided between the silver or silver alloy layer and the underlying layer; and a producing method of the above-described electrical contact, in which the silver-coated stainless steel strip is subjected to a heat-treating in a non-oxidative atmosphere.
Abstract:
A pressure sensitive sensor is composed of a pair of upper and lower electrodes sheets 1 and 2 disposed oppositely, a spacer 3 interposed between both of the sheets 1 and 2, and adhesives 4 and 5 between these electrode sheets 1 and 2 and spacer 3. In the spacer 3, a hole 31 is formed in a position of a contact portion 6. A diameter of this hole 31, convex portions 13 and a pressure sensitive electrode 22 are set in such a positional relationship that a peripheral portion of the hole 31 is overlapped between the convex portions 13 and the pressure sensitive electrode 22. Then, the adhesives 4 and 5 open more largely than the diameter of the hole 31 of the spacer 3 so as to be removed from the peripheral portion of the hole 31 on both surfaces of the spacer 3.
Abstract:
The present invention relates to a membrane switch which is not subject to stress relaxation at contacts and is resistant to the reduction in actuating force even if the ambient temperature of the switch becomes high. A first flexible insulating substrate having a first contact pattern and a second flexible insulating substrate having a second contact pattern are disposed in facing relation via a spacer member having an opening at an area in which the first contact patterns face each other; wiring patterns conductive-connected to corresponding contact patterns are provided on at least one of the first flexible insulating substrate and the second flexible insulating substrate; and the first and second contact patterns are conductive-connected by pressure applied to a contact comprising the first and second contact patterns. The wiring patterns are conductive layers containing resin made of a mixture of conductive powder and binder resin, and a part of the second contact pattern includes a layer containing resin that is more rigid than the binder resin.
Abstract:
Analog resistance touch switches and matrix type touch switches have contacts coated with a very thin film, which in use does not form an appreciable amount of an insulating oxide, to inhibit changes in contact resistance and extend operating life.
Abstract:
A touch sensitive data input device is provided for use with the screen of a cathode ray tube. The device has an annular bezel that loosely supports a firm clear backing plate. A rear transparent sheet element that has a coefficient of thermal expansion different from that of the backing plate is loosely retained against the backing plate to avoid deformation induced by differential thermal expansions. A closely spaced apart front transparent element is placed adjacent the rear transparent sheet, their respective adjacent surfaces having mutually orthogonal electrically conductive strips that make local electrical contact when a force is applied to the front element. An annular frame over the front element is secured to the bezel. In one aspect of the invention, a gasket with both sides coated with a resilient bonding material seals the frame to the bezel to protect the zone between the transparent front and rear elements from contamination by environmental pollutants.