Gas-liquid-solid three-phase slurry bed industrial reactor capable of achieving continuous operation

    公开(公告)号:US10363535B1

    公开(公告)日:2019-07-30

    申请号:US15956030

    申请日:2018-04-18

    Abstract: A gas-liquid-solid three-phase slurry bed industrial reactor capable of achieving continuous operation comprises an inlet gas distribution component composed of a false bottom and inlet gas distribution tubes, one or more layers of heat exchange tube components used for heating/cooling the bed, one or more layers of liquid-solid separator components capable of being cleaned automatically, an outlet gas-liquid-solid entrainment separation component located in the upper portion of the interior of the reactor and used for removing liquid foam and solid entrainments, a plurality of layers of solid concentration uniform distribution devices used for reducing the catalyst concentration gradient and the inlet-outlet temperature difference of the reactor, a flow guiding device located on a component support beam and used for preventing catalyst accumulation, and auxiliary systems including a filter-backflush system and a washing system. Compared with the prior art, the reactor is low in energy consumption and solves the problems of blockage, backflow and dead zones, the temperature and liquid level are well controlled, catalysts can be easily added and discharged online, and stable and continuous operation of the reactor is achieved. The reactor is suitable for being applied to the Fischer-Tropsch synthesis process on an industrial scale.

    Multi directional device for vapor-solid mixing

    公开(公告)号:US10150054B1

    公开(公告)日:2018-12-11

    申请号:US15827410

    申请日:2017-11-30

    Abstract: A packing system is disclosed that has a series of flat blades arranged to promote mixing in a fluidized bed such as one in a FCC stripper, with an upward flowing gas stream and a downward flowing solid particle stream. The blade arrangement provides for different gas solids flow directions within a single layer of packing system to enhance cross mixing of gas and catalyst in all directions and reduces the potential for gas and catalyst bypassing. The blade arrangement has splits which minimizes the tendency for phase separation around the blade. The arrangement and sizing of the blades is intended to promote intimate contact between the two phases to ensure efficient mass transfer of material trapped inside the particles to the gas phase. The arrangement of the blades prevents excessive bubble growth and channeling, both of which reduce surface area for mass transfer.

Patent Agency Ranking