Abstract:
An electron emission device includes a number of second electrodes intersected with a number of first electrodes to define a number of intersections. An electron emission unit is sandwiched between the first electrode and the second electrode at each of the number of intersections, wherein the electron emission unit includes a semiconductor layer, an electron collection layer, and an insulating layer stacked together, and the electron collection layer is a conductive layer.
Abstract:
Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
Abstract:
Graphite comprises atoms arranged in discrete layers (100). The perpendicular distance between these layers is the ‘d-spacing’ (101). A field emission material is obtained by expanding the d-spacing (102). Such expansion may be achieved by an intercalant that has been introduced between layers of the material. Such an intercalant may reside, or may no longer reside, in the material. The material may be placed in position on a substrate by a printing process, prior to expansion. Such field emission material may be used in cold cathodes in field electron emission devices.
Abstract:
A field emission electron source includes a substrate. A wiring layer is formed on the substrate, and an insulation layer is formed over the wiring layer. In the insulation layer, a plurality of through holes are provided, and conductive via plugs are disposed in the through holes. A diamond layer is formed to cover tops of the insulation layer and the conductive via plugs.
Abstract:
The front glass substrate and the back glass substrate are placed opposite each other with display cells in between. MIM electron-emitting devices each structured by the opposed cathode electrode and gate electrode sandwiching an insulator layer are arranged in matrix form on the inner face of the front glass substrate. An anode electrode and phosphor layers emitting visible light by being excited by ultraviolet light are provided on the inner face of the back glass substrate. The display cells are filled with an ultraviolet-light-emitting gas generating ultraviolet light by being excited by electrons.
Abstract:
This invention relates to a device for emitting addressable locations comprises parallel spaced-apart first conductors (10) intersecting with parallel spaced-apart second conductors (11). The intersecting first and second conductors define addressable locations where electrons (12) are emitted in response to the application of an energizing voltage. One face of the first conductors is covered with an insulating layer (13) against which the second conductors (11) are applied, this insulating layer (13) forming a tunnel barrier for hot electrons (12) that travel ballistically through and are emitted from the second conductors (11) in response to the application of the energizing voltage. The emitted electrons impinge a target (30, 40, 50) which can be a light-emitting screen of a flat panel display, such as an electroluminescent polymer of a flat panel screen, or an electroluminescent phosphorous screen, or a target wafer bombarded by the electrons emitted from a flexible e-beam lithography mask. The intersecting conductors (10, 11) can be Al wires, or can be produced by C-MOS technology.
Abstract:
Disclosed is an electron source 10 including an electron source element 10a formed on the side of one surface of an insulative substrate 1. The electron source element 10a includes a lower electrode 2, a composite nanocrystal layer 6 and a surface electrode 7. The composite nanocrystal layer 6 includes a plurality of polycrystalline silicon grains 51, a thin silicon oxide film 52 formed over the surface of each of the grains 51, a number of nanocrystalline silicons 63 residing between the adjacent grains 51, and a silicon oxide film 64 formed over the surface of each of the nanocrystalline silicons 63. The silicon oxide film 64 is an insulating film having a thickness less than the crystal grain size of the nanocrystalline silicon 63. The surface electrode 7 is formed of a carbon thin film 7a laminated on the composite nanocrystal layer 6 while being in contact therewith, and a metal thin film 7b laminated on the carbon thin film 7a.
Abstract:
A principal object of the present invention is to provide efficiently an electron-emitting element demonstrating performance equal or superior to that attained with the conventional technology. The electron-emitting element of the present invention comprises: (a) a substrate, (b) a lower electrode layer provided on the substrate, (c) an electron-emitting layer provided on the lower electrode layer, and (d) a control electrode layer so disposed as not to be in contact with the electron-emitting layer, wherein the electron-emitting layer comprises an electron-emitting material for emitting electrons in an electric field, (1) the electron-emitting material being a porous body having a 3D-network structure skeleton, (2) the 3D-network structure skeleton being composed on an inner portion and a surface portion, (3) the surface portion comprising an electron-emitting component, (4) the inner portion being occupied by (i) at least one of an insulating material and a semiinsulating material, (ii) an empty space, or (iii) at least one of an insulating material and a semiinsulating material and an empty space.
Abstract:
An emitter has an electron supply and a porous cathode layer having nanohole openings. The emitter also has a tunneling layer disposed between the electron supply and the cathode layer.
Abstract:
A display having hot electron type electron sources displaying an image by a line sequential scanning scheme is provided to prevent poor brightness uniformity along scan lines. The hot electron type electron source is provided with a top electrode bus line serving as a scan line and a bottom electrode bus line serving as a data line. The top electrode bus line has a sheet resistance lower than that of the bottom electrode. The wire sheet resistance of the scam line can be reduced to several m/square. When forming a 40 inch large screen FED using the hot electron type electron sources, a voltage drop amount produced in the scan line can be suppressed below an allowable range. As a result, high quality image without poor brightness uniformity can be obtained.