Abstract:
A biometric biochemical analysis system includes a user interface module to provide instructions for collecting and handling biochemical sampling and processing related to biometric data gathering as well as capturing biometric data using digital data capturing devices. The user interface module and display are integrated with analysis and communications portions of the biometric biochemical analysis system to provide a portable system for multi-portion data collecting, storage, verification, and analysis.
Abstract:
A live help system provides an intuitive display of help information on a user's graphical user interface. A request is received from a client device for help, and a live help provider interface is initiated at a live help location. Data is acquired regarding a user's location, including data on external devices in the user's location. Indicators are provided to allow the live help provider to point to or otherwise indicate items on the user interface or outside of the user interface. Live help input is captured at the live help provider interface. Instructions are then transmitted to the display of the client device to display live help input, as though the agent were present and interacting with or indicating items on the screen or off the screen.
Abstract:
A command center includes at least one network communications interface configured for two-way communications with a plurality of sites remote from the command center and at least one display screen and user interface. Each of the plurality of sites includes at least one forensic field test device configured to identify individuals using DNA samples from the individuals. The display screen and user interface are configured to depict aspects of forensic field test devices of the plurality of sites, wherein the aspects include a site identifier for each of the forensic field test devices and one or more additional aspects.
Abstract:
This disclosure provides, among other things, a cartridge comprising: (a) a cartridge body comprising a malleable material and having, disposed on a surface of the body, at least one valve body comprising a valve inlet and a valve outlet, each fluidically connected to a fluidic channel; and (b) a layer comprising a deformable material bonded to a surface of the cartridge body and sealing the at least one valve body at points of attachment, thereby forming at least one valve; wherein the at least one valve body is depressed in the cartridge body relative to the points of attachment and wherein the deformable material covering the at least one valve body retains sufficient elasticity after deformation such that in a ground state the valve is open. Also disclosed is an instrument comprising a cartridge interface and a cartridge as described herein engaged with the cartridge interface, wherein (II) the cartridge interface comprises: (A) at least one mechanical actuator, each mechanical actuator positioned to actuate a valve; and (B) at least one motor operatively coupled to actuate a mechanical actuator toward or away from a valve.
Abstract:
The invention provides systems, devices, methods, and kits for performing an integrated analysis. The integrated analysis can include sample processing, library construction, amplification, and sequencing. The integrated analysis can be performed within one or more modules that are fluidically connected to each other. The one or more modules can be controlled and/or automated by a computer. The integrated analysis can be performed on a tissue sample, a clinical sample, or an environmental sample. The integrated analysis system can have a compact format and return results within a designated period of time.
Abstract:
The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and/or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.
Abstract:
Provided herein are instruments and cartridges for processing samples. The cartridges include fluidic circuits in which fluid movement can be regulated by diaphragm valves. In certain cartridges, deformable material providing a diaphragm contacts an interface in the instrument that actuates the diaphragm directly, without intervening actuation layer. Certain cartridges have a plurality of fluidic circuits and fluid distribution channels or pneumatic distribution channels configured to deliver fluids or pneumatic pressure to any of the fluidic circuits, selectively. Certain cartridges have compartments containing on-board reagents. Compartments can be closed by a film attached to a body the cartridge through a heat seal.
Abstract:
The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and/or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.
Abstract:
The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and/or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.