Abstract:
A light emitting device (LED-Filament) comprises: a light-transmissive substrate; at least one blue LED chip mounted on a face of the light-transmissive substrate; and a photoluminescence material at least partially covering the at least one blue LED chip. The photoluminescence material comprises phosphor particles of at least one Group IIA/IIB selenide sulfide-based phosphor material that generates red light with a peak emission wavelength in a range of 600 nm to 640 nm and a full width at half maximum emission intensity of 50 nm to 55 nm. The LED-filament can be incorporated in a lamp, with a yellow to green-emitting phosphor that generates yellow to green light with a peak emission wavelength in a range of 520 nm to 570 nm, to provide light with a color temperature in a range of 1500 K to 4000 K and a General Color Rendering Index (CRI Ra) of greater than or equal to 90 and a CRI R9 greater than or equal to 50.
Abstract:
A narrow band red phosphor may have a general composition MSxSeyAz:Eu, wherein M is at least one of Mg, Ca, Sr and Ba, A is at least one of C, N, B, P and a monovalent combining group NCN (cyanamide), and may in some embodiments further include one or more of O, F, Cl, Br and I. In embodiments 0.8
Abstract:
Disclosed herein are green-emitting, garnet-based phosphors having the formula (Lu1−a−b−cYaTbbAc)3(Al1−dBd)5(O1−eCe)12:Ce,Eu, where A is selected from the group consisting of Mg, Sr, Ca, and Ba; B is selected from the group consisting of Ga and In; C is selected from the group consisting of F, Cl, and Br; and 0≦a≦1; 0≦b≦1; 0
Abstract:
An LED-based linear lamp comprises a linear array of LEDs and an elongated wavelength conversion component. The wavelength conversion component comprises first and second wavelength conversion wall portions that extend along the direction of elongation of the component and which comprise a photoluminescence material and a light reflective portion that extends along the direction of elongation of the component. The light reflective portion separates the first and second wavelength conversion portions. Together, the light reflective, first and second wavelength conversion portions define an interior volume with a cross-section having a line of symmetry through the light reflective portion and the component is mountable over the linear array of LEDs such that the LEDs are housed within the interior volume.
Abstract:
A diffuser component for a solid-state (LED) light emitting device comprises a light scattering material, wherein the light scattering material has an average particle size that is selected such that the light scattering material will scatter excitation light from a solid-state excitation source relatively more than the light scattering material will scatter light generated by at least one photoluminescence material (phosphor) in a wavelength conversion component. The diffuser component is separately manufactured from the wavelength conversion component.
Abstract:
Yellow-green to yellow-emitting, lutetium aluminate-based terbium (Tb) containing phosphors for use in white LEDs, general lighting, and LED and backlighting displays are disclosed herein. The phosphor may further contain gadolinium (Gd). In one embodiment of the present invention, the phosphor comprises a cerium-activated, yellow-green to yellow-emitting lutetium aluminate-based phosphor having the formula (Lu1-xAx)3Al5O12:Ce wherein A is at least one of Gd and Tb and 0.1≦x≦1.0, wherein the phosphor is configured to emit light having a peak emission wavelength ranging from about 550 nm to about 565 nm, and wherein the phosphor contains at least some Tb.
Abstract:
Red-emitting phosphors may comprise a nitride-based composition represented by the chemical formula MaSrbSicAldNeEuf, wherein: M is at least one of Mg, Ca, Sr, Ba, Y, Li, Na, K and Zn, and 0 2+d/v and v is the valence of M. Furthermore, nitride-based red-emitting phosphor compositions may be represented by the chemical formula MxM′2Si5-yAlyN8:A, wherein: M is Mg, Ca, Sr, Ba, Y, Li, Na, K and Zn, and x>0; M′ is at least one of Mg, Ca, Sr, Ba, and Zn; 0≦y≦0.15; and A is at least one of Eu, Ce, Tb, Pr, and Mn; wherein x>y/v and v is the valence of M, and wherein the red-emitting phosphors have the general crystalline structure of M′2Si5N8:A.
Abstract:
A photoluminescence material paste comprises: a first inorganic photoluminescence material having a first density, a second inorganic photoluminescence material having a second density and a light transmissive non-curable silicone fluid that is not curable by itself. The first density of the first inorganic photoluminescence material is different from the second density of the second inorganic photoluminescence material. The first and second inorganic photoluminescence materials are substantially homogenously distributed within the light transmissive non-curable silicone fluid to form the photoluminescence material paste. A weight loading of the first and second photoluminescence materials in the photoluminescence material paste is in a range of about 60% to about 95%.
Abstract:
A solid-state light emitting device comprises a light transmissive thermally conductive circuit board; an array of solid-state light emitters (LEDs) mounted on, and electrically connected to, at least one face of the circuit board; and a photoluminescence wavelength conversion component. The wavelength conversion component comprises a mixture of particles of at least one photoluminescence material (phosphor) and particles of a light reflective material. The emission product of the device comprises the combined light generated by the LEDs and the photoluminescence material. The wavelength conversion component can comprise a layer of the phosphor material and particles of a light reflective material applied directly to the array of LEDs in the form of an encapsulant. Alternatively the photoluminescence component is a separate component and remote to the array of LEDs such as tubular component that surrounds the LEDs.
Abstract:
The teachings are generally directed to phosphors having combination coatings with multifunctional characteristics that increase the performance and/or reliability of the phosphor. The teachings include highly reliable phosphors having coatings that contain more than one inorganic component, more than one layer, more than one thicknesses, more than one combination of layers or thicknesses, a gradient-interface between components, a primer thickness or layer to inhibit or prevent leaching of phosphor components into the coatings, a sealant layer to inhibit or prevent entry of moisture or oxygen from the environment, a mixed composition layer as a sealant and multifunctional combination coatings.