Abstract:
A method for defining magnetic domains in a magnetic thin film on a substrate, includes: coating the magnetic thin film with a resist; patterning the resist, wherein areas of the magnetic thin film are substantially uncovered; and exposing the magnetic thin film to a plasma, wherein plasma ions penetrate the substantially uncovered areas of the magnetic thin film, rendering the substantially uncovered areas non-magnetic. A tool for this process comprises: a vacuum chamber held at earth potential; a gas inlet valve configured to leak controlled amounts of gas into the chamber; a disk mounting device configured to (1) fit within the chamber, (2) hold a multiplicity of disks, spacing the multiplicity of disks wherein both sides of each of the multiplicity of disks is exposed and (3) make electrical contact to the multiplicity of disks; and a radio frequency signal generator electrically coupled to the disk mounting device and the chamber, whereby a plasma can be ignited in the chamber and the disks are exposed to plasma ions uniformly on both sides. This process may be used to fabricate memory devices, including magnetoresistive random access memory devices.
Abstract:
A digit signal processor capable of operating at 100 MHZ with a 1.0 volt power supply. The digital signal processor is fabricated by application of strong phase-shift lithography to obtain a 0.12 &mgr;m gate dimension. A dual-mask process is utilized to improve resolution thereby producing high speed, low-voltage processors. A n+/p+ dual-Poly:Si module, and dopant penetration suppression techniques may be utilized.
Abstract translation:一个数字信号处理器能够以1.0伏的电源工作在100MHZ。 数字信号处理器是通过应用强相移光刻技术制造的,以获得0.12μm的门尺寸。 利用双掩模工艺来提高分辨率,从而产生高速,低电压处理器。 可以使用n + / p +双Poly:Si模块和掺杂剂渗透抑制技术。
Abstract:
An improved attenuated phase-shifting mask (APSM) for use with an imaging tool for forming a patterned feature on a photoresist layer of a semiconductor wafer. The APSM has a transmissive region for substantially transmitting light therethrough to form a projected image substantially shaped as the patterned feature on the photoresist layer. The APSM also has an attenuating and phase-shifting region, contiguous with the transmissive region, for absorbing a portion of the light incident thereon and for shifting the phase of the incident light by a predetermined number of degrees relative to that of the light transmitted through the transmissive region so as to destructively interfere with the light transmitted through the transmissive region and to project a background image. The transmissive region has a dimension d dimensioned such that the intensity of the image projected by the transmissive region is darker than the intensity of the background image projected by the attenuating and phase-shifting region of the mask and that the intensity of the background image is substantially uniform.
Abstract:
A process for device fabrication and resist materials that are used in the process are disclosed. The resist material contains a substituted amine-containing component and a polymer. The substituted-amine containing component is either a photoacid generator, or an amine additive to the resist material that also contains a photoacid generator. The resist material contains acid labile groups either pendant to the polymer or to a dissolution inhibitor that is combined with the polymer. The acid labile groups significantly decrease the solubility of the polymer in a solution of aqueous base. A film of the resist material is formed on a substrate and exposed to delineating radiation. The radiation induces a chemical change in the resist material rendering the exposed resist material substantially more soluble in aqueous base solution than the unexposed portion of the resist material. The image introduced into the resist material is developed using conventional techniques, and the resulting pattern is then transferred into the underlying substrate.
Abstract:
The present invention is directed to a process for device fabrication and resist materials that are used in the process. The resist material contains a polymer that is the polymerization product of a monomer that contains alicyclic moieties and at least one other monomer. The polymer is formed by free radical polymerization, and the resulting polymer either has alicyclic moieties incorporated into the polymer backbone or pendant to the polymer backbone via saturated hydrocarbon linkages. Other monomers are selected for polymerization with the alicyclic moiety-containing monomer on the basis of the ability of the monomer to copolymerize by free radical polymerization. Although the polymers are contemplated as useful in resist materials that are sensitive to radiation in the ultraviolet, and x-ray wavelengths as well as sensitive to electron beam radiation, the polymers are particularly advantageous for use in process in which the exposing radiation is 193 nm, because the amount of ethylenic unsaturation in these resist materials is low.
Abstract:
Methods for providing a silicon layer on a photomask substrate surface with minimum defeats for fabricating film stack thereon for EUVL applications are provided. In one embodiment, a method for forming a silicon layer on a photomask substrate includes performing an oxidation process to form a silicon oxide layer on a surface of a first substrate wherein the first substrate comprises a crystalline silicon material, performing an ion implantation process to define a cleavage plane in the first substrate, and bonding the silicon oxide layer to a surface of a second substrate, wherein the second substrate is a quartz photomask.
Abstract:
Embodiments of the present invention generally provide an apparatus and methods for etching photomasks using charged beam plasma. In one embodiment, an apparatus for performing a charged beam plasma process on a photomask includes a processing chamber having a chamber bottom, a chamber ceiling and chamber sidewalls defining an interior volume, a substrate support pedestal disposed in the interior volume, a charged beam generation system disposed adjacent to the chamber sidewall, and a RF bias electrode disposed in the substrate support.
Abstract:
Solar cells are provided with carbon nanotubes (CNTs) which are used: to define a micron/sub-micron geometry of the solar cells; and/or as charge transporters for efficiently removing charge carriers from the absorber layer to reduce the rate of electron-hole recombination in the absorber layer. A solar cell may comprise: a substrate; a multiplicity of areas of metal catalyst on the surface of the substrate; a multiplicity of carbon nanotube bundles formed on the multiplicity of areas of metal catalyst, each bundle including carbon nanotubes aligned roughly perpendicular to the surface of the substrate; and a photoactive solar cell layer formed over the carbon nanotube bundles and exposed surfaces of the substrate, wherein the photoactive solar cell layer is continuous over the carbon nanotube bundles and the exposed surfaces of the substrate. The photoactive solar cell layer may be comprised of amorphous silicon p/i/n thin films; although, concepts of the present invention are also applicable to solar cells with absorber layers of microcrystalline silicon, SiGe, carbon doped microcrystalline silicon, CIS, CIGS, CISSe and various p-type II-VI binary compounds and ternary and quaternary compounds.
Abstract:
The present invention generally relates to electrochromic (EC) devices, such as used in electrochromic windows (ECWs), and their manufacture. The EC devices may comprise a transparent substrate; a first transparent conductive layer; a doped coloration layer, wherein the coloration layer dopants provide structural stability to the arrangement of atoms in the coloration layer; an electrolyte layer; a doped anode layer over said electrolyte layer, wherein the anode layer dopant provides increased electrically conductivity in the doped anode layer; and a second transparent conductive layer. A method of fabricating an electrochromic device may comprise depositing on a substrate, in sequence, a first transparent conductive layer, a doped coloration layer, an electrolyte layer, a doped anode layer, and a second transparent conductive layer, wherein at least one of the doped coloration layer, the electrolyte layer and the doped anode layer is sputter deposited using a combinatorial plasma deposition process.
Abstract:
A method for patterning a magnetic thin film on a substrate includes: providing a pattern about the magnetic thin film, with selective regions of the pattern permitting penetration of energized ions of one or more elements. Energized ions are generated with sufficient energy to penetrate selective regions and a portion of the magnetic thin film adjacent the selective regions. The substrate is placed to receive the energized ions. The portions of the magnetic thin film are rendered to exhibit a magnetic property different than selective other portions. A method for patterning a magnetic media with a magnetic thin film on both sides of the media is also disclosed.