Abstract:
Systems, methods, and devices are disclosed for applying concealment of components of an electronic device. In one embodiment, an electronic device may include a component that is disposed behind a display (e.g., a transparent organic light-emitting diode (OLED) display) that is configured to selectively become transparent at certain transparency regions. Additionally, the electronic device includes data processing circuitry configured to determine when an event requesting that the component be exposed occurs. The data processing circuitry may control portions of the display to become transparent, to expose the component upon the occurrence of the event requesting that the component be exposed.
Abstract:
Apparatus, systems and methods for shock mounting glass for an electronic device are disclosed. The glass for the electronic device can provide an outer surface for at least a portion of a housing for the electronic device. In one embodiment, the shock mounting can provide a compliant interface between the glass and the electronic device housing. In another embodiment, the shock mounting can provide a mechanically actuated retractable. For example, an outer glass member for an electronic device housing can be referred to as cover glass, which is often provided at a front surface of the electronic device housing.
Abstract:
An electronic device may be provided with electronic components such as mapping circuitry for measuring distances, areas, volumes or other properties of objects in the surrounding environment of the device. The mapping circuitry may include a laser sensor and device position detection circuitry. The device may include processing circuitry configured to gather laser sample data and device position data using the laser sensor and the device position detection circuitry. The laser sample data and the device position data may be gathered while pointing a laser beam generated with a laser in the laser sensor at one or more sample points on a surface such as a surface of a wall. By tracking the device position and orientation using the device position detection circuitry, the objects may be mapped while gathering laser sample data from any position with respect to the object.
Abstract:
Embodiments can provide reversible or dual orientation USB plug connectors for mating with standard USB receptacle connectors, e.g., a standard Type A USB receptacle connector. Accordingly, the present invention may be compatible with any current or future electronic device that includes a standard USB receptacle connector. USB plug connectors according to the present invention can have a 180 degree symmetrical, double orientation design, which enables the plug connector to be inserted into a corresponding receptacle connector in either of two intuitive orientations. Thus, embodiments of the present invention may reduce the potential for USB connector damage and user frustration during the incorrect insertion of a USB plug connector into a corresponding USB receptacle connector of an electronic device. Reversible USB plug connectors according to the present invention may include a compliant member or structural support for distributing stress and increasing contact normal force at the tongue of the reversible USB plug connector.
Abstract:
Several mechanical features of an electronic device are provided. In some embodiments, the electronic device may include a bezel coupled to a housing. The bezel may include one or more snaps extending into the electronic device which may be operative to engage a cantilever spring extending from the inner surface of the housing. In some embodiments, the electronic device may include a window that is formed by coupling an outer layer to an inner layer that is larger than the outer layer. In some embodiments, the electronic device may include a chassis for supporting the window. In some embodiments, the electronic device may include a grounding clip for simultaneously grounding the bezel, the housing and a circuit board. In some embodiments, the electronic device may include a switch that includes a button molded into a base using a double shot process. In some embodiments, the electronic device may include a switch supporting bracket that includes a slot operative to receive a pin of the bezel. In some embodiments, the housing of the electronic device may be manufactured using a forging process.
Abstract:
An electronic device may be provided with printed circuits. Electrical components may be interconnected using signal paths formed from metal traces in the printed circuits. The printed circuits may include flexible printed circuits with bent configurations. The flexible printed circuits may be provided with integral bend retention structures. A bend retention structure may be formed from a polymer layer, a solder layer, a stiffener formed from metal or polymer that is attached to flexible printed circuit layers with adhesive, a conformal plastic coating that covers exposed metal traces at a bend, a metal stiffener with screw holes, a shape memory alloy, a portion of a flexible printed circuit dielectric substrate layer with a reduced elongation at yield value, or combinations of these structures. The bend retention structure maintains a bend in a bent flexible printed circuit.
Abstract:
The disclosed embodiments relate to a technique for inductively charging an electronic device. This technique involves winding an audio cable for the electronic device around a charging mechanism multiple times so that one or more conductors in the audio cable form an inductive receiving coil. Next, a magnetic field is created through the charging mechanism to induce a current in the inductive receiving coil. Finally, the induced current in the inductive receiving coil is used to charge a rechargeable battery for the electronic device.
Abstract:
Apparatus, systems and methods for shock mounting glass for an electronic device are disclosed. The glass for the electronic device can provide an outer surface for at least a portion of a housing for the electronic device. In one embodiment, the shock mounting can provide a compliant interface between the glass and the electronic device housing. In another embodiment, the shock mounting can provide a mechanically actuated retractable. For example, an outer glass member for an electronic device housing can be referred to as cover glass, which is often provided at a front surface of the electronic device housing.
Abstract:
Electronic devices may be provided that contain flexible displays that are bent to form displays on multiple surfaces of the devices. Bent flexible displays may be bent to form front side displays and edge displays. Edge displays may be separated from front side displays or from other edge displays using patterned housing members, printed or painted masks, or by selectively activating and inactivating display pixels associated with the flexible display. Edge displays may alternately function as virtual buttons, virtual switches, or informational displays that are supplemental to front side displays. Virtual buttons may include transparent button members, lenses, haptic feedback components, audio feedback components, or other components for providing feedback to a user when virtual buttons are activated.
Abstract:
Configurable buttons for electronic devices such as portable electronic devices are provided. A configurable button may have a button member that moves relative to a device housing when it is desired to activate a switch. The button may have an associated touch sensor. The touch sensor may detect when a user's finger touches a particular portion of the button member. Contact with only this portion of the button member is generally inadvertent, so an actuator may be used to prevent or otherwise restrict motion of the button relative to a device housing. This prevents inadvertent activation of the button when a user is manipulating portions of an electronic device such as clip or lid, but does not intend to depress the button.