Abstract:
An electroplating system includes a processor has a vessel having a first or upper compartment and a second or lower compartment containing catholyte and anolyte, respectively, with an processor anionic membrane between them. An inert anode is located in the second compartment. A replenisher is connected to the vessel via catholyte return and supply lines and anolyte return and supply lines, to circulate catholyte and anolyte through compartments in the replenisher separated by a replenisher anionic membrane. The replenisher adds metal ions into the catholyte by moving ions from a bulk metal source, and moves anions from the anolyte through the anionic membrane and into the catholyte. Concentrations or metal ions and anions in the catholyte and the anolyte remain balanced.
Abstract:
An electro-processing apparatus has a contact ring including a seal which is able to compensate for electric field distortions created by a notch (or other irregularity) on the wafer or work piece. The shape of the contact ring at the notch is changed, to reduce current crowding at the notch. The change in shape changes the resistance of the current path between a thief electrode and the wafer edge to increase thief electrode current drawn from the region of the notch. As a result, the wafer is plated with a film having more uniform thickness.
Abstract:
An electroplating apparatus has a vessel for holding electrolyte. A head has a rotor including a contact ring for holding a wafer having a notch. The contact ring includes a perimeter voltage ring having perimeter contact fingers for contacting the wafer around the perimeter of the wafer, except at the notch. The contact ring also has a notch contact segment having one or more notch contact fingers for contacting the wafer at the notch. The perimeter voltage ring is insulated from the notch contact segment. A negative voltage source is connected to the perimeter voltage ring, and a positive voltage source connected to the notch contact segment. The positive voltage applied at the notch reduces the current crowding effect at the notch. The wafer is plated with a film having more uniform thickness.
Abstract:
A seal ring for an electrochemical processor does not slip or deflect laterally when pressed against a wafer surface. The seal ring may be on a rotor of the processor, with the seal ring having an outer wall joined to a tip arc through an end. The outer wall may be a straight wall. A relatively rigid support ring may be attached to the seal ring, to provide a more precise sealing dimension. Knife edge seal rings that slip or deflect laterally on the wafer surface may also be used. In these designs, the slipping is substantially uniform and consistent, resulting in improved performance.
Abstract:
An electroplating processor includes a base having a vessel body. A membrane assembly including a membrane housing is attached to a membrane plate. A membrane is provided on a membrane support attached to the membrane housing. An anode assembly includes an anode cup and one or more anodes in the anode cup. An anode plate is attached to the anode cup. Two or more posts on a first side of the anode plate are engageable with post fittings on the membrane plate. Latches on a second side of the anode plate are engageable with and releasable from a latch fitting on the membrane plate. The anode assembly is quickly and easily removable from the processor for maintenance, without disturbing or removing other components of the processor.
Abstract:
An electroplating apparatus has one or more membrane tube rings which act as electric field shields, to provide advantageous plating characteristics at the perimeter of a work piece. The membrane tube rings may be filled with fluids having different conductivity, to change the shielding effect as desired for electroplating different types of substrates. The membrane tube rings may optionally be provided in or on a diffuser plate in the vessel of the apparatus.
Abstract:
A method for processing a wafer includes holding the wafer in a face-up position with a seal ring contacting the wafer on a contact circumference. A bead of liquid is applied onto the entire contact circumference, with the bead of liquid contacting the wafer and the seal ring. The wafer is then inverted into a head-down position, lowered into contact with electrolyte and plated with a conductive film. Formation of the bead of liquid helps to displace air bubbles as the wafer is immersed into the electrolyte which reduces plating defects.
Abstract:
An electrochemical processor may include a head having a rotor configured to hold a workpiece, with the head moveable to position the rotor in a vessel. Inner and outer anodes are in inner and outer anolyte chambers within the vessel. An upper cup in the vessel, has a curved upper surface and inner and outer catholyte chambers. A current thief is located adjacent to the curved upper surface. Annular slots in the curved upper curved surface connect into passageways, such as tubes, leading into the outer catholyte chamber. Membranes may separate the inner and outer anolyte chambers from the inner and outer catholyte chambers, respectively.
Abstract:
An electroplating processor includes an electrode plate having a continuous flow path formed in a channel. The flow path may optionally be a coiled flow path. One or more electrodes are positioned in the channel. A membrane plate is attached to the electrode plate with a membrane in between them. Electrolyte moves through the flow path at a high velocity, preventing bubbles from sticking to the bottom surface of membrane. Any bubbles in the flow path are entrained in the fast moving electrolyte and carried away from the membrane. The electroplating processor may alternatively have a wire electrode extending through a tubular membrane formed into a coil or other shape, optionally including shapes having straight segments.
Abstract:
A detection fixture is provided with a processor for electroplating a substrate such as a semiconductor wafer, to detect the level of electrolyte in a bowl of the processor. The detected electrolyte level is used in controlling entry of the substrate into the electrolyte, to achieve desired electrolyte wetting characteristics. The processor has a substrate holder supported on a lifter for lowering the substrate holder into the bowl. The detection fixture may emulate a substrate and be held by the substrate holder in the same way that the substrate holder holds a substrate. The lifter lowers the detection fixture until it makes contact with the electrolyte, with the position of the fixture indicative the electrolyte level. The detection fixture is then removed from the processor.