-
公开(公告)号:US11640984B2
公开(公告)日:2023-05-02
申请号:US16363952
申请日:2019-03-25
申请人: Intel Corporation
发明人: Jack Kavalieros , Ian Young , Matthew Metz , Uygar Avci , Chia-Ching Lin , Owen Loh , Seung Hoon Sung , Aditya Kasukurti , Sou-Chi Chang , Tanay Gosavi , Ashish Verma Penumatcha
摘要: Techniques and mechanisms for providing electrical insulation or other protection of an integrated circuit (IC) device with a spacer structure which comprises an (anti)ferromagnetic material. In an embodiment, a transistor comprises doped source or drain regions and a channel region which are each disposed in a fin structure, wherein a gate electrode and an underlying dielectric layer of the transistor each extend over the channel region. Insulation spacers are disposed on opposite sides of the gate electrode, where at least a portion of one such insulation spacer comprises an (anti)ferroelectric material. Another portion of the insulation spacer comprises a non-(anti)ferroelectric material. In another embodiment, the two portions of the spacer are offset vertically from one another, wherein the (anti)ferroelectric portion forms a bottom of the spacer.
-
公开(公告)号:US20220199624A1
公开(公告)日:2022-06-23
申请号:US17132981
申请日:2020-12-23
申请人: Intel Corporation
发明人: Cheng-Ying Huang , Ashish Agrawal , Gilbert Dewey , Abhishek A. Sharma , Wilfred Gomes , Jack Kavalieros
IPC分类号: H01L27/108 , H01L27/11507 , H01L29/06 , H01L29/423 , H01L29/786 , H01L29/66 , H01L21/683
摘要: Monolithic two-dimensional (2D) arrays of double-sided DRAM cells including a frontside bit cell over a backside bit cell. Each double-sided cell includes a stacked transistor structure having at least a first transistor over a second transistor. Each double-sided cell further includes a first capacitor on a frontside of the stacked transistor structure and electrically coupled to a source/drain of the first transistor. Each double-sided cell further includes a second capacitor on a backside of the stacked transistor structure and electrically coupled to a source/drain of the second transistor. Frontside cell addressing interconnects are electrically coupled to other terminals of at least the first transistor while one or more backside addressing interconnects are electrically coupled to at least one terminal of the second transistor or second capacitor.
-
公开(公告)号:US20220199402A1
公开(公告)日:2022-06-23
申请号:US17133079
申请日:2020-12-23
申请人: Intel Corporation
发明人: Koustav Ganguly , Ryan Keech , Harold Kennel , Willy Rachmady , Ashish Agrawal , Glenn Glass , Anand Murthy , Jack Kavalieros
IPC分类号: H01L21/02 , H01L29/16 , H01L27/092 , H01L29/78
摘要: High-purity Ge channeled N-type transistors include a Si-based barrier material separating the channel from a Ge source and drain that is heavily doped with an N-type impurity. The barrier material may have nanometer thickness and may also be doped with N-type impurities. Because of the Si content, N-type impurities have lower diffusivity within the barrier material and can be prevented from entering high-purity Ge channel material. In addition to Si, a barrier material may also include C. With the barrier material, an N-type transistor may display higher channel mobility and reduced short-channel effects.
-
公开(公告)号:US11335793B2
公开(公告)日:2022-05-17
申请号:US16957667
申请日:2018-02-28
申请人: Intel Corporation
发明人: Cheng-Ying Huang , Jack Kavalieros , Ian Young , Matthew Metz , Willy Rachmady , Uygar Avci , Ashish Agrawal , Benjamin Chu-Kung
IPC分类号: H01L29/66 , H01L29/06 , H01L29/417 , H01L29/786
摘要: Tunneling Field Effect Transistors (TFETs) are promising devices in that they promise significant performance increase and energy consumption decrease due to a steeper subthreshold slope (for example, smaller sub-threshold swing). In various embodiments, vertical fin-based TFETs can be fabricated in trenches, for example, silicon trenches. In another embodiment, vertical TFETs can be used on different material systems acting as a substrate and/or trenches (for example, Si, Ge, III-V semiconductors, GaN, and the like). In one embodiment, the tunneling direction in the channel of the vertical TFET can be perpendicular to the Si substrates. In one embodiment, this can be different than the tunneling direction in the channel of lateral TFETs.
-
公开(公告)号:US20220093586A1
公开(公告)日:2022-03-24
申请号:US17540120
申请日:2021-12-01
申请人: Intel Corporation
发明人: Cheng-Ying Huang , Gilbert Dewey , Ashish Agrawal , Kimin Jun , Willy Rachmady , Zachary Geiger , Cory Bomberger , Ryan Keech , Koustav Ganguly , Anand Murthy , Jack Kavalieros
IPC分类号: H01L27/06 , H01L21/683 , H01L21/8238 , H01L29/10 , H01L29/04 , H01L29/08 , H01L27/092
摘要: A monolithic three-dimensional integrated circuit may include multiple transistor levels separated by one or more levels of metallization. An upper level transistor structure may include a monocrystalline channel material over a bottom gate stack. The channel material and the gate stack materials may be formed on a donor substrate at any suitable temperature, and subsequently transferred from the donor substrate to a host substrate that includes lower-level circuitry. The upper-level transistor may be patterned from the transferred layers so that the gate electrode includes one or more bonding layers. Source and drain material may be patterned from a source and drain material layer that was transferred from the donor substrate along with the channel material, or source and drain material may be grown at low temperatures from the transferred channel material.
-
56.
公开(公告)号:US11063131B2
公开(公告)日:2021-07-13
申请号:US16440609
申请日:2019-06-13
申请人: Intel Corporation
发明人: Nazila Haratipour , Sou-Chi Chang , Chia-Ching Lin , Jack Kavalieros , Uygar Avci , Ian Young
摘要: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by providing tensile stress along a plane (e.g., x-axis) of a ferroelectric or anti-ferroelectric material of the ferroelectric/anti-ferroelectric based capacitor. Tensile stress is provided by a spacer comprising metal, semimetal, or oxide (e.g., metal or oxide of one or more of: Al, Ti, Hf, Si, Ir, or N). The tensile stress provides polar orthorhombic phase to the ferroelectric material and tetragonal phase to the anti-ferroelectric material. As such, memory window and reliability of the ferroelectric/anti-ferroelectric oxide thin film improves.
-
公开(公告)号:US20210036023A1
公开(公告)日:2021-02-04
申请号:US16529643
申请日:2019-08-01
申请人: Intel Corporation
发明人: Ashish Agrawal , Jack Kavalieros , Anand Murthy , Gilbert Dewey , Matthew Metz , Willy Rachmady , Cheng-Ying Huang , Cory Bomberger
IPC分类号: H01L27/12 , H01L29/08 , H01L29/417 , H01L29/10 , H01L29/66
摘要: Thin film transistor structures may include a regrown source or drain material between a channel material and source or drain contact metallization. The source or drain material may be selectively deposited at low temperatures to backfill recesses formed in the channel material. Electrically active dopant impurities may be introduced in-situ during deposition of the source or drain material. The source or drain material may overlap a portion of a gate electrode undercut by the recesses. With channel material of a first composition and source or drain material of a second composition, thin film transistor structures may display low external resistance and high channel mobility.
-
公开(公告)号:US20200098757A1
公开(公告)日:2020-03-26
申请号:US16139684
申请日:2018-09-24
申请人: INTEL CORPORATION
发明人: Willy Rachmady , Matthew Metz , Gilbert Dewey , Nicholas Minutillo , Cheng-Ying Huang , Jack Kavalieros , Anand Murthy , Tahir Ghani
IPC分类号: H01L27/092 , H01L29/06 , H01L29/10 , H01L29/423 , H01L29/207 , H01L29/08 , H01L29/78 , H01L29/66 , H01L21/8238
摘要: An integrated circuit with at least one transistor is formed using a buffer structure on the substrate. The buffer structure includes one or more layers of buffer material and comprises indium, gallium, and phosphorous. A ratio of indium to gallium in the buffer structure increases from a lower value to a higher value such that the buffer structure has small changes in lattice constant to control relaxation and defects. A source and a drain are on top of the buffer structure and a body of Group III-V semiconductor material extends between and connects the source and the drain. A gate structure wrapped around the body, the gate structure including a gate electrode and a gate dielectric, wherein the gate dielectric is between the body and the gate electrode.
-
公开(公告)号:US10263074B2
公开(公告)日:2019-04-16
申请号:US15605795
申请日:2017-05-25
申请人: Intel Corporation
发明人: Han Wui Then , Robert Chau , Benjamin Chu-Kung , Gilbert Dewey , Jack Kavalieros , Matthew Metz , Niloy Mukherjee , Ravi Pillarisetty , Marko Radosavljevic
IPC分类号: H01L29/06 , H01L29/66 , H01L29/775 , G05F3/02 , H01L29/786 , B82Y10/00 , H01L21/02 , H01L21/225 , H01L21/283 , H01L21/306 , H01L21/31 , H01L21/311 , H01L21/3213 , H01L21/324 , H01L29/04 , H01L29/417 , H01L29/423 , H01L29/20
摘要: Transistors suitable for high voltage and high frequency operation are disclosed. A nanowire is disposed vertically or horizontally on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first semiconductor material, a source region electrically coupled with a first end of the channel region, a drain region electrically coupled with a second end of the channel region, and an extrinsic drain region disposed between the channel region and drain region. The extrinsic drain region has a wider bandgap than that of the first semiconductor. A gate stack including a gate conductor and a gate insulator coaxially wraps completely around the channel region, drain and source contacts similarly coaxially wrap completely around the drain and source regions.
-
60.
公开(公告)号:US10121897B2
公开(公告)日:2018-11-06
申请号:US15660574
申请日:2017-07-26
申请人: Intel Corporation
发明人: Robert S. Chau , Suman Datta , Jack Kavalieros , Justin K. Brask , Mark L. Doczy , Matthew Metz
IPC分类号: H01L29/78 , H01L29/66 , H01L29/786 , H01L29/267 , H01L29/10 , H01L29/20 , H01L29/423 , H01L29/51 , H01L29/06 , H01L29/08 , H01L29/201 , H01L29/207 , H01L29/417 , H01L29/45 , H01L29/16
摘要: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
-
-
-
-
-
-
-
-
-