Abstract:
A magnetoresistive memory cell includes a magnetic tunnel junction pillar having a circular cross section. The pillar has a pinned magnetic layer, a tunnel barrier layer, and a free magnetic layer. A first conductive contact is disposed above the magnetic tunnel junction pillar. A second conductive contact is disposed below the magnetic tunnel junction pillar.
Abstract:
A method of making a magnetic random access memory device includes forming a magnetic tunnel junction (MTJ) on an electrode, the MTJ including a reference layer, a tunnel barrier layer, and a free layer; disposing a hard mask on the MTJ; etching sidewalls of the hard mask and MTJ to form a stack with a first width and redeposit metal along the MTJ sidewall; depositing a sacrificial dielectric layer on the hard mask, surface of the electrode, exposed sidewall of the hard mask and the MTJ, and on redeposited metal along the sidewall of the MTJ; removing a portion of the sacrificial dielectric layer from sidewalls of the hard mask and MTJ and redeposited metal from the MTJ sidewalls; and removing a portion of a sidewall of the MTJ and hard mask to provide a second width to the stack; wherein the second width is less than the first width.
Abstract:
A magnetic memory device includes a magnetic memory stack including a bottom electrode and having a hard mask formed thereon. An encapsulation layer is formed over sides of the magnetic memory stack and has a thickness adjacent to the sides formed on the bottom electrode. A dielectric material is formed over the encapsulation layer and is removed from over the hard mask and gapped apart from the encapsulation layer on the sides of the magnetic memory stack to form trenches between the dielectric material and the encapsulation layer at the sides of the magnetic memory stack. A top electrode is formed over the hard mask and in the trenches such that the top electrode is spaced apart from the bottom electrode by at least the thickness.
Abstract:
A method of making a magnetic random access memory (MRAM) device includes depositing a spacer material on an electrode; forming a magnetic tunnel junction (MTJ) on the spacer material that includes a reference layer in contact with the spacer material, a free layer, and a tunnel barrier layer; patterning a hard mask on the free layer; etching the MTJ and the spacer material to transfer a pattern of the hard mask into the MTJ and the spacer material; forming an insulating layer along a sidewall of the hard mask, the MTJ, and the spacer material; disposing an interlayer dielectric (ILD) on and around the hard mask, MTJ, and spacer material; etching through the ILD to form a trench that extends to a surface and sidewall of the hard mask and a sidewall of a portion of the MTJ; and disposing a metal in the trench to form a contact electrode.
Abstract:
A method of making a magnetic random access memory (MRAM) device includes depositing a spacer material on an electrode; forming a magnetic tunnel junction (MTJ) on the spacer material that includes a reference layer in contact with the spacer material, a free layer, and a tunnel barrier layer; patterning a hard mask on the free layer; etching the MTJ and the spacer material to transfer a pattern of the hard mask into the MTJ and the spacer material; forming an insulating layer along a sidewall of the hard mask, the MTJ, and the spacer material; disposing an interlayer dielectric (ILD) on and around the hard mask, MTJ, and spacer material; etching through the ILD to form a trench that extends to a surface and sidewall of the hard mask and a sidewall of a portion of the MTJ; and disposing a metal in the trench to form a contact electrode.
Abstract:
A method of making a magnetic random access memory device includes forming a magnetic tunnel junction (MTJ) on an electrode, the MTJ including a reference layer, a tunnel barrier layer, and a free layer; disposing a hard mask on the MTJ; etching sidewalls of the hard mask and MTJ to form a stack with a first width and redeposit metal along the MTJ sidewall; depositing a sacrificial dielectric layer on the hard mask, surface of the electrode, exposed sidewall of the hard mask and the MTJ, and on redeposited metal along the sidewall of the MTJ; removing a portion of the sacrificial dielectric layer from sidewalls of the hard mask and MTJ and redeposited metal from the MTJ sidewalls; and removing a portion of a sidewall of the MTJ and hard mask to provide a second width to the stack; wherein the second width is less than the first width.
Abstract:
A magnetic memory device includes a magnetic memory stack including a bottom electrode and having a hard mask formed thereon. An encapsulation layer is formed over sides of the magnetic memory stack and has a thickness adjacent to the sides formed on the bottom electrode. A dielectric material is formed over the encapsulation layer and is removed from over the hard mask and gapped apart from the encapsulation layer on the sides of the magnetic memory stack to form trenches between the dielectric material and the encapsulation layer at the sides of the magnetic memory stack. A top electrode is formed over the hard mask and in the trenches such that the top electrode is spaced apart from the bottom electrode by at least the thickness.
Abstract:
A method of making a magnetic random access memory device includes forming a magnetic tunnel junction (MTJ) on an electrode, the MTJ including a reference layer, a tunnel barrier layer, and a free layer; disposing a hard mask on the MTJ; etching sidewalls of the hard mask and MTJ to form a stack with a first width and redeposit metal along the MTJ sidewall; depositing a sacrificial dielectric layer on the hard mask, surface of the electrode, exposed sidewall of the hard mask and the MTJ, and on redeposited metal along the sidewall of the MTJ; removing a portion of the sacrificial dielectric layer from sidewalls of the hard mask and MTJ and redeposited metal from the MTJ sidewalls; and removing a portion of a sidewall of the MTJ and hard mask to provide a second width to the stack; wherein the second width is less than the first width.
Abstract:
A method for forming a memory device includes masking a photoresist material using a reticle and a developer having a polarity opposite that of the photoresist to provide an island of photoresist material. A planarizing layer is etched to establish a pillar of planarizing material defined by the island of photoresist material. A metal layer is etched to form a metal pillar having a diameter about the same as the pillar of planarizing material. A memory stack is etched to form a memory stack pillar having a diameter about the same as the metal pillar. A magnetoresistive memory cell includes a magnetic tunnel junction pillar having a circular cross section. The pillar has a pinned magnetic layer, a tunnel barrier layer, and a free magnetic layer. A first conductive contact is disposed above the magnetic tunnel junction pillar. A second conductive contact is disposed below the magnetic tunnel junction pillar.
Abstract:
In one aspect, a method of fabricating a bipolar transistor device on a wafer includes the following steps. A dummy gate is formed on the wafer, wherein the dummy gate is present over a portion of the wafer that serves as a base of the bipolar transistor. The wafer is doped to form emitter and collector regions on both sides of the dummy gate. A dielectric filler layer is deposited onto the wafer surrounding the dummy gate. The dummy gate is removed selective to the dielectric filler layer, thereby exposing the base. The base is recessed. The base is re-grown from an epitaxial material selected from the group consisting of: SiGe, Ge, and a III-V material. Contacts are formed to the base. Techniques for co-fabricating a bipolar transistor and CMOS FET devices are also provided.