Abstract:
Fabrication methods, device structures, and design structures for a bipolar junction transistor. An emitter is formed in a device region defined in a substrate. An intrinsic base is formed on the emitter. A collector is formed that is separated from the emitter by the intrinsic base. The collector includes a semiconductor material having an electronic bandgap greater than an electronic bandgap of a semiconductor material of the device region.
Abstract:
Disclosed are embodiments of a bipolar or heterojunction bipolar transistor and a method of forming the transistor. The transistor can incorporate a dielectric layer sandwiched between an intrinsic base layer and a raised extrinsic base layer to reduce collector-base capacitance Ccb, a sidewall-defined conductive strap for an intrinsic base layer to extrinsic base layer link-up region to reduce base resistance Rb and a dielectric spacer between the extrinsic base layer and an emitter layer to reduce base-emitter Cbe capacitance. The method allows for self-aligning of the emitter to base regions and incorporates the use of a sacrificial dielectric layer, which must be thick enough to withstand etch and cleaning processes and still remain intact to function as an etch stop layer when the conductive strap is subsequently formed. A chemically enhanced high pressure, low temperature oxidation (HIPOX) process can be used to form such a sacrificial dielectric layer.
Abstract:
Disclosed are embodiments of a bipolar or heterojunction bipolar transistor and a method of forming the transistor. The transistor can incorporate a dielectric layer sandwiched between an intrinsic base layer and a raised extrinsic base layer to reduce collector-base capacitance Ccb, a sidewall-defined conductive strap for an intrinsic base layer to extrinsic base layer link-up region to reduce base resistance Rb and a dielectric spacer between the extrinsic base layer and an emitter layer to reduce base-emitter Cbe capacitance. The method allows for self-aligning of the emitter to base regions and incorporates the use of a sacrificial dielectric layer, which must be thick enough to withstand etch and cleaning processes and still remain intact to function as an etch stop layer when the conductive strap is subsequently formed. A chemically enhanced high pressure, low temperature oxidation (HIPOX) process can be used to form such a sacrificial dielectric layer.
Abstract:
Embodiments of the present invention include a method for forming a tunable semiconductor device. In one embodiment, the method comprises: forming a semiconductor substrate; patterning a first mask over the semiconductor substrate; doping regions of the semiconductor substrate not protected by the first mask to form a first discontinuous subcollector; removing the first mask; patterning a second mask over the semiconductor substrate; doping regions of the semiconductor substrate not protected by the second mask and on top of the first discontinuous subcollector to form a second discontinuous subcollector; removing the second mask; and forming a single continuous collector above the second discontinuous subcollector.
Abstract:
A device structure for a bipolar junction transistor includes a base layer made of a semiconductor material. An emitter is disposed on a first portion of the base layer. A dopant-containing layer is disposed on a second portion of the base layer. A hardmask is disposed on the base layer. The hardmask includes a window aligned with the second portion of the base layer. Deposits of the dopant-containing layer are limited to exposed surfaces of: the first portion that is disposed on a top surface of the base layer inside of the window.
Abstract:
A tunable breakdown voltage RF MESFET and/or MOSFET and methods of manufacture are disclosed. The method includes forming a first line and a second line on an underlying gate dielectric material. The second line has a width tuned to a breakdown voltage. The method further includes forming sidewall spacers on sidewalls of the first and second line such that the space between first and second line is pinched-off by the dielectric spacers. The method further includes forming source and drain regions adjacent outer edges of the first line and the second line, and removing at least the second line to form an opening between the sidewall spacers of the second line and to expose the underlying gate dielectric material. The method further includes depositing a layer of material on the underlying gate dielectric material within the opening, and forming contacts to a gate structure and the source and drain regions.
Abstract:
A tunable breakdown voltage RF MESFET and/or MOSFET and methods of manufacture are disclosed. The method includes forming a first line and a second line on an underlying gate dielectric material. The second line has a width tuned to a breakdown voltage. The method further includes forming sidewall spacers on sidewalls of the first and second line such that the space between first and second line is pinched-off by the dielectric spacers. The method further includes forming source and drain regions adjacent outer edges of the first line and the second line, and removing at least the second line to form an opening between the sidewall spacers of the second line and to expose the underlying gate dielectric material. The method further includes depositing a layer of material on the underlying gate dielectric material within the opening, and forming contacts to a gate structure and the source and drain regions.
Abstract:
Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.
Abstract:
Various particular embodiments include a method of amorphizing a portion of silicon underneath the N+ base section of a PNP transistor structure. After amorphizing, the method can include selectively etching that implant-amorphized silicon to trim the collector-base area and collector-base junction. The selective etching is enhanced because the unimplanted silicon region etches at a distinct rate than the implant-amorphized silicon, allowing for control over the trimming of the collector-base junction.
Abstract:
Device structures for a bipolar junction transistor. The device structure includes a collector region, an intrinsic base formed on the collector region, an emitter coupled with the intrinsic base and separated from the collector by the intrinsic base, and an isolation region extending through the intrinsic base to the collector region. The isolation region is formed with a first section having first sidewalls that extend through the intrinsic base and a second section with second sidewalls that extend into the collector region. The second sidewalls are inclined relative to the first sidewalls. The isolation region is positioned in a trench that is formed with first and second etching process in which the latter etches different crystallographic directions of a single-crystal semiconductor material at different etch rates.