Abstract:
A processing system includes a processing core to execute a virtual machine (VM) comprising a guest operating system (OS) and a memory management unit, communicatively coupled to the processing core, comprising a storage device to store an extended page table entry (EPTE) comprising a mapping from a guest physical address (GPA) associated with the guest OS to an identifier of a memory frame, a first plurality of access right flags associated with accessing the memory frame in a first page mode referenced by an attribute of a memory page identified by the GPA, and a second plurality of access right flags associated with accessing the memory frame in a second page mode referenced by the attribute of the memory page identified by the GPA.
Abstract:
A processor including logic to execute an instruction to synchronize a mapping from a physical address of a guest of a virtualization based system (guest physical address) to a physical address of the host of the virtualization based system (host physical address), and stored in a translation lookaside buffer (TLB), with a corresponding mapping stored in an extended paging table (EPT) of the virtualization based system.
Abstract:
A processor including logic to execute an instruction to synchronize a mapping from a physical address of a guest of a virtualization based system (guest physical address) to a physical address of the host of the virtualization based system (host physical address), and stored in a translation lookaside buffer (TLB), with a corresponding mapping stored in an extended paging table (EPT) of the virtualization based system.
Abstract:
A processor includes a memory management unit and a front end including a decoder. The decoder includes logic to receive a flush-on-commit (FoC) instruction to flush dirty data from a volatile cache to a persistent memory upon commitment of a store associated with the FoC instruction. The memory management unit includes logic to, based upon a flush-on-fail (FoF) mode, skip execution of the flush-on-commit instruction and to flush the dirty data from the volatile cache upon a subsequent FoF operation.
Abstract:
Embodiments of apparatuses and methods for processing virtualization events in a layered virtualization architecture are disclosed. In one embodiment, an apparatus includes a hardware processor including event circuit to recognize a virtualization event, and evaluation circuit to determine whether to transfer control of the apparatus from a child guest to a parent guest in response to the virtualization event, wherein the child guest and the parent guest each include a bit per virtualization event to indicate whether the parent guest is to gain control when the virtualization event occurs.
Abstract:
Computer-readable storage media, computing apparatuses and methods associated with persistent memory are discussed herein. In embodiments, a computing apparatus may include one or more processors, along with a plurality of persistent storage modules that may be coupled with the one or more processors. The computing apparatus may further include system software, to be operated by the one or more processors, to receive volatile memory allocation requests and persistent storage allocation requests from one or more applications that may be executed by the one or more processors. The system software may then dynamically allocate memory pages of the persistent storage modules as: volatile type memory pages, in response to the volatile memory allocation requests, and persistent type memory pages, in response to the persistent storage allocation requests. Other embodiments may be described and/or claimed.
Abstract:
An apparatus and method for fine grain memory protection. For example, one embodiment of a method comprises: performing a first lookup operation using a virtual address to identify a physical address of a memory page, the memory page comprising a plurality of sub-pages; determining whether sub-page permissions are enabled for the memory page; if sub-page permissions are enabled, then performing a second lookup operation to determine permissions associated with one or more of the sub-pages of the memory page; and implementing the permissions associated with the one or more sub-pages.
Abstract:
A processor including logic to execute an instruction to synchronize a mapping from a physical address of a guest of a virtualization based system (guest physical address) to a physical address of the host of the virtualization based system (host physical address), and stored in a translation lookaside buffer (TLB), with a corresponding mapping stored in an extended paging table (EPT) of the virtualization based system.
Abstract:
A processor including a virtualization system of the processor with a memory virtualization support system to map a reference to guest-physical memory made by guest software executable on a virtual machine which in turn is executable on a host machine in which the processor is operable to a reference to host-physical memory of the host machine.
Abstract:
A processor including logic to execute an instruction to synchronize a mapping from a physical address of a guest of a virtualization based system (guest physical address) to a physical address of the host of the virtualization based system (host physical address), and stored in a translation lookaside buffer (TLB), with a corresponding mapping stored in an extended paging table (EPT) of the virtualization based system.