Abstract:
An optical apparatus in which multiplexed holograms are used to achieve wavelength selectivity and polarization manipulation is used to facilitate near-normal incidence of light on the holograms. The polarization manipulation allows light reflected from the holograms to be separated from the light incident on the holograms. In one application, the apparatus can be used to extract spectral lines of an analyte from radiation scattered from a sample.
Abstract:
An apparatus is described in which the temperature of a semiconductor laser (or other device) can be set to a desired value by using the heat generated by the laser itself in conjunction with an adjustable thermal impedance heat sink to effect the desired temperature rise.
Abstract:
This disclosure concerns systems, methods and devices for temperature-based control of laser performance. One example of a method is performed in connection with a laser of an optoelectronic transceiver. In particular, the laser is operated over a range of temperatures and the optical output of the laser is monitored. During operation of the laser, the bias current and current swing supplied to the laser are adjusted to the extent necessary to maintain a substantially constant optical output from the laser over the range of temperatures.
Abstract:
A temperature-controlled optoelectronic module that includes a module housing, a laser mount structure for affixing a laser package in the module housing, an optical fiber receptacle structure disposed adjacent to the laser mount structure, a thermal isolator affixed between the laser mount structure and the optical fiber receptacle structure, and a temperature controller coupled to the laser mount structure and operable to regulate temperature of the laser package is disclosed. In the absence of the thermal isolator, a “thermal short” may be created between the module housing and the laser package, substantially reducing the efficiency of the temperature controller. The presence of the thermal isolator eliminates the “thermal short,” substantially increases the effectiveness of the temperature controller and enables the miniaturization of temperature-controlled optoelectronic transceiver modules.
Abstract:
Optical devices and associated production methods are disclosed, one example of such a device takes the form of a semiconductor optical amplifier having first and second ends that at least partially define a signal propagation path. The semiconductor optical amplifier has an active layer that includes multiple quantum well stacks disposed between the first and second ends along the signal propagation path. Finally, the multiple quantum well stacks have a thickness and a width that vary along the signal propagation path.
Abstract:
An edge emitting laser that emits a single mode using photonic mirrors. An edge emitting laser includes an active region that is formed between an n-type semiconductor material and a p-type semiconductor material. Photonic mirrors are formed in the laser to define a gain cavity and an external cavity. The gain cavity is bounded by a cleaved facet and a photonic mirror or by a pair of photonic mirrors. The external cavity is bounded by the photonic mirror of the gain cavity and either a cleaved facet or another photonic mirror. The mode emitted by the laser is determined by characteristics of the photonic mirrors, including the periodic cavity structures of the mirrors.
Abstract:
A single mode high power vertical cavity surface emitting laser (VCSEL) using photonic crystals. A photonic crystal is included in at least one mirror layer of a VCSEL. The reflectivity of the photonic crystal is dependent on the wavelength and incident angle of the photons. The photonic crystal can be formed such that the VCSEL lases at a single mode. Because a single mode is generated, the aperture of the VCSEL can be enlarged to increase the power that is generated by the VCSEL for that mode. The photonic crystal can be used with/without DBR layers. The photonic crystal, in one example, forms an external cavity.
Abstract:
A method of achieving radial (x,y) alignment between an active device subassembly and an optical fiber subassembly of an optical package is disclosed. The method relies on the use of mating sections with essentially identical outer diameters. The subassemblies are brought into contact and are first joined at the two points where the edges of the piece parts coincide (flush points). It has been determined that by continuing the attachment process at symmetric locations about one of the flush points, minimal disturbance of throughput efficiency will be maintained. The optical throughput is continually monitored to determined at which particular flush point the attachment process should proceed. In particular, as soon as the throughput efficiency drops below a predetermined value, the attachment process is rotated to continue at the opposite flush point.