摘要:
A system and method for notifying a notification recipient of an event status change and allowing the notification recipient to request action is disclosed. An event occurs. A message relating to the event applicable to an end-user is created. A communication link between an outbound module and a device associated with the end-user is established. The message is delivered to the end-user device. The communication link is transferred from the outbound module to an inbound module. A response is received from the end-user device at the inbound module.
摘要:
The invention relates to a sintering method for manufacturing structures by sintering. In addition, the invention relates to a sintered product, an electronic module, and new uses. In the method, a particle material containing conductive or semiconductive encapsulated nanoparticles is sintered, in order to increase its electrical conductivity, by applying a voltage over the particle material. In the method, a substrate is typically used, one surface of which is at least partly equipped with a layer containing nanoparticles. The method is based on thermal feedback between the voltage feed and the nanoparticles. The invention permits the manufacture of conductive and semiconductive structures and pieces by sintering at room temperature and at normal pressure.
摘要:
The present invention determines the resonant frequency of a sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency or set of frequencies and a predetermined amplitude. The energizing signal is coupled to the sensor via magnetic coupling and induces a current in the sensor which oscillates at the resonant frequency of the sensor. The system receives the ring down response of the sensor via magnetic coupling and determines the resonant frequency of the sensor, which is used to calculate the measured physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal.
摘要:
A system for assessing brain functioning uses neuropsychological assessments which are performed while a patient is within an fMRI scanning environment and while scanning is in process to detect the BOLD signals within the patient's brain. The system may be used to detect brain impairment and injuries which do not present tissue damage detectable using previous methods.
摘要:
This publication concerns electronics modules comprising at least one first material zone formed of first material which can be structurally transformed by means of electric interaction in order to increase its conductivity at least locally, the first material having a first transformation threshold, and at least one second material zone in the vicinity of the first material zone. According to the invention, the second material zone is formed from second material, which can also be structurally transformed in order to increase its conductivity, the second material having a second transformation threshold, which is lower than the transformation threshold of the first material zone. With the aid of the invention, post-processing electrical programmability and non-volatility of printable memories can be achieved.
摘要:
The present invention determines the resonant frequency of a sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency or set of frequencies and a predetermined amplitude. The energizing signal is coupled to the sensor via magnetic coupling and induces a current in the sensor which oscillates at the resonant frequency of the sensor. The system receives the ring down response of the sensor via magnetic coupling and determines the resonant frequency of the sensor, which is used to calculate the measured physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal.
摘要:
A representative method for manufacturing a highly-laminated magnetic inductor core includes: depositing at least a first layer of a ferromagnetic material; depositing at least a first layer of a sacrificial conductive material; depositing a support structure formed of a ferromagnetic material; and removing the sacrificial conductive material, thereby leaving the at least first layer of ferromagnetic material mechanically supported by the support structure.
摘要:
A structural member is reinforced with a thermoset polymer foam having (a) a density of 80-650 kg/m3, (b) a storage modulus, measured on a 12 mm wide×3.5 mm thick×17.5 single cantilever sample according to ASTM D 4065-01, under conditions of 1 Hz and a heating rate of 2° C./min, such that the ratio of the storage modulus at 0° C., expressed in MPa, divided by the density of the thermoset polymer foam, expressed in kg/m3, is at least 0.4, and (c) the ratio of the storage modulus of the thermoset polymer foam at 100° C. divided by the storage modulus of the thermoset polymer foam at 0° C. is at least 0.5. The foam is preferably a polyurethane-isocyanurate foam. The foam exhibits excellent resistance to cracking due to mechanical and thermal stresses.
摘要翻译:结构构件用热固性聚合物泡沫增强,其具有(a)密度为80-650kg / m 3,(b)在12mm宽×3.5mm厚×17上测量的储能模量。 5单悬臂样品根据ASTM D 4065-01,在1Hz和加热速率为2℃/ min的条件下,使得在0℃下的储能模量的比率(以MPa表示)除以 以kg / m 3表示的热固性聚合物泡沫体的密度为至少0.4,和(c)在100℃下的热固性聚合物泡沫体的储能模量除以存储 热固性聚合物泡沫在0℃下的模量为至少0.5。 泡沫优选为聚氨酯 - 异氰脲酸酯泡沫。 由于机械和热应力,泡沫表现出优异的抗开裂性能。
摘要:
The present invention determines the resonant frequency of a sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency or set of frequencies and a predetermined amplitude. The energizing signal is coupled to the sensor via magnetic coupling and induces a current in the sensor which oscillates at the resonant frequency of the sensor. The system receives the ring down response of the sensor via magnetic coupling and determines the resonant frequency of the sensor, which is used to calculate the measured physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal.
摘要:
A surface micromachined electromagnetically radiating antenna includes a coplanar waveguide on a ground plane coated substrate having a conductor path. The conductor path is coupled to a monopole conductor, which has a generally-cylindrical backbone erected vertically from the substrate and a metal layer deposited on the backbone at a predetermined thickness. The antenna may be fabricated by depositing an epoxy on the ground plane coated substrate to a predetermined depth and according to a pattern. The epoxy is exposed to an ultraviolet source that develops one or more columns according to the pattern. A seed layer of metal may be formed on the developed column. A conductive metal is electrodeposited over the column surface to produce the monopole antenna. Other antenna may be created by adding monopoles and/or conductive metal patches and/or strips that are positioned atop the monopoles and elevated from the substrate.