Abstract:
Various embodiments of the present invention are directed to external, electronically controllable, negative index material-based modulators. In one aspect, an external modulator comprises a negative index material in electronic communication with an electronic signal source. The negative index material receives an electronic signal encoding data from the electronic signal source and an unmodulated carrier wave from an electromagnetic radiation source. Magnitude variations in the electronic signal produce corresponding effective refractive index changes in the negative index material encoding the data in the amplitude and/or phase of the carrier wave to produce an electromagnetic signal.
Abstract:
A scattering spectroscopy apparatus, system and method employ guided mode resonance (GMR) and a GMR grating. The apparatus includes a GMR grating having a subwavelength grating, and an optical detector configured to receive a portion of a scattered signal produced by an interaction between an excitation signal and an analyte associated with a surface of the GMR grating. A propagation direction of the received portion of the scattered signal is substantially different from a propagation direction of a GMR-coupled portion of the excitation signal within the GMR grating. The system includes the apparatus and an optical source. The method includes exciting a GMR in a GMR grating, interacting a GMR-coupled portion of the excitation signal with an analyte to produce a scattered signal and detecting a portion of the scattered signal.
Abstract:
Various embodiments of the present invention are directed to systems and methods for obtaining images of objects with higher resolution than the diffraction limit. In one aspect, a method for collecting evanescent waves scattered from an object comprises electronically configuring a reconfigurable device to operate as a grating for one or more lattice periods using a computing device. Propagating waves scattered from the object pass through the reconfigurable device and a portion of evanescent waves scattered from the object are projected into the far field of the object. The method includes detecting propagating waves and detecting the portion of evanescent waves projected into the far field for each lattice period using an imaging system.
Abstract:
An apparatus for dynamically varying an optical characteristic of a light beam includes an optical element configured to receive a beam of light. The optical element includes at least one sub-wavelength grating formed of a plurality of lines. The apparatus includes at least one actuator connected to at least one component of the optical element and a controller for controlling the at least one actuator to dynamically vary a characteristic of the beam of light that is at least one of emitted through and reflected from the optical element.
Abstract:
Various embodiments of the present invention are directed to compact, sub-wavelength optical resonators. In one aspect, an optical resonator comprises two approximately parallel reflective structures positioned and configured to form a resonant cavity. The resonator also includes a fishnet structure disposed within the cavity and oriented approximately parallel to the reflective structures. The resonant cavity is configured with a cavity length that can support resonance with electromagnetic radiation having a fundamental wavelength that is more than twice the cavity length.
Abstract:
This invention relates to polypeptides which bind to IGF-1R and to applications of those polypeptides in medicine, veterinary medicine, diagnostics and imaging.
Abstract:
A vertical cavity surface emitting laser (VCSEL) system and method of fabrication are included. The VCSEL system includes a first portion comprising a first mirror and a gain region to amplify an optical signal in response to a data signal, the first portion being fabricated on a first wafer. The system also includes a second portion comprising a second mirror that is partially-reflective to couple the optical signal to an optical fiber. The second portion can be fabricated on a second wafer. The system further includes a supporting structure to couple the first and second portions such that the first and second mirrors are arranged as a laser cavity having a predetermined length to resonate the optical signal.
Abstract:
Aspects of the present invention are directed to flat sub-wavelength dielectric gratings that can be configured to operate as mirrors and other optical devices. In one aspect, a grating layer (102) has a planar geometry and is configured with lines (206,207). The lines widths, line thicknesses and line period spacings (208) are selected to control phase changes in different portions of a beam of light reflected from the grating such that the phase changes collectively produce a desired wavefront shape in the beam of light reflected from the grating.
Abstract:
A negative index material (or metamaterial) crossbar includes a first layer of approximately parallel nanowires and a second layer of approximately parallel nanowires that overlay the nanowires in the first layer. The nanowires in the first layer are approximately perpendicular in orientation to the nanowires in the second layer. Each nanowire of the first layer and each nanowire of the second layer has substantially regularly spaced fingers. The crossbar further includes resonant elements at nanowire intersections between the respective layers. Each resonant element includes two fingers of a nanowire in the first layer and two fingers of a nanowire in the second layer.
Abstract:
Various embodiments of the present invention are directed to display systems for viewing three-dimensional images. In one aspect, a viewing system that enables a viewer to perceive depth in a three-dimensional image includes a right-eye ocular system positioned in the line of sight of the viewer's right eye, and a left-eye ocular system positioned in the line of sight of the viewer's left eye. The right-eye ocular system and the left-eye ocular system are configured to display corresponding stereo right-eye and left-eye image pairs of the three-dimensional image at various distances from the viewer's eyes.