摘要:
A non-volatile memory device includes a tunneling insulating layer on a semiconductor substrate, a charge storage layer, a blocking insulating layer, and a gate electrode. The charge storage layer is on the tunnel insulating layer and has a smaller band gap than the tunnel insulating layer and has a greater band gap than the semiconductor substrate. The blocking insulating layer is on the charge storage layer and has a greater band gap than the charge storage layer and has a smaller band gap than the tunnel insulating layer. The gate electrode is on the blocking insulating layer.
摘要:
Integrated circuit flash memory devices, such as NAND flash memory devices, include an array of regular flash memory cells, an array of dummy flash memory cells and an erase controller. The erase controller is configured to concurrently apply a different predetermined bias voltage to the dummy flash memory cells than to the regular flash memory cells during an erase operation of the integrated circuit flash memory device. Related methods are also described.
摘要:
A non-volatile memory device includes a semiconductor substrate, a tunneling insulating layer, a charge storage layer, a blocking insulating layer, and a gate electrode. The tunneling insulating layer is on the substrate and has a first dielectric constant. The charge storage layer is on the tunneling insulating layer. The blocking insulating layer is on the charge storage layer and has a second dielectric constant which is greater than the first dielectric constant of the tunneling insulting layer. The gate electrode is on the blocking insulating layer, and at least a portion of the gate electrode adjacent to the blocking layer has a higher work-function than polysilicon.
摘要:
Floating trap non-volatile memory devices and methods are provided. The memory devices include a semiconductor substrate and an adjacent gate electrode. Between the substrate and the gate electrode may be a tunneling insulating layer having a first dielectric constant, a blocking insulating layer having a second dielectric constant that is greater than the first dielectric constant, and a charge storage layer.
摘要:
Nonvolatile memory devices and methods of making the same are described. A nonvolatile memory device includes a string selection transistor, a plurality of memory cell transistors, and a ground selection transistor electrically connected in series to the string selection transistor and to the pluralities of memory cell transistors. Each of the transistors includes a channel region and source/drain regions. First impurity layers are formed at boundaries of the channels and the source/drain regions of the memory cell transistors. The first impurity layers are doped with opposite conductivity type impurities relative to the source/drain regions of the memory cell transistors. Second impurity layers are formed at boundaries between a channel and a drain region of the string selection transistor and between a channel and a source region of the ground selection transistor. The second impurity layers are doped with the same conductivity type impurities as the first impurity layers and have a higher impurity concentration than the first impurity layers.
摘要:
Floating trap non-volatile memory devices and methods are provided. The memory devices include a semiconductor substrate and an adjacent gate electrode. Between the substrate and the gate electrode may be a tunneling insulating layer having a first dielectric constant, a blocking insulating layer having a second dielectric constant that is greater than the first dielectric constant, and a charge storage layer.
摘要:
A non-volatile memory device and fabrication method thereof are provided. A floating region is formed on an active region on a substrate. Trenches define the active region. The floating region is made of an ONO layer. A gate electrode is formed on the floating region. A mask is formed on the gate electrode. A thermal oxidation is performed to make a sidewall oxide and a trench oxide on the sidewall of the gate electrode and the trench, respectively. As a result, the widths of the gate electrode and the active region become less than the width of the floating region, thereby forming protrusions at ends of the floating region. Isolation regions are formed in the trenches and include the sidewall oxide and the trench oxide. The isolation regions surround the protrusions. As a result, electric field induced on the sidewall of the floating region is decreased. Moreover, the thermal oxidation cures any damage to the sidewalls of the floating region. Accordingly, leakage current can be substantially suppressed at the boundary region between the isolation region and the floating region.
摘要:
A method of forming a non-volatile memory having a floating trap-type device is disclosed in the present invention. In the method, a relatively thick thermal oxide layer is formed at a semiconductor substrate and patterned to leave a thick thermal oxide pattern at a high-voltage region (a high-voltage region defining step). An oxide-nitride-oxide (ONO) layer is formed over substantially the entire surface (the substantial surface) of the semiconductor substrate and patterned to leave an ONO pattern at a cell memory region (a cell memory region defining step). After the high-voltage region defining step and the cell memory region defining step, a thermal oxidizing process is performed with respect to the semiconductor substrate where a low-voltage region is exposed, thereby forming a relatively thin gate insulation layer for a low-voltage type device (a low-voltage region defining region).
摘要:
A memory device may include a plurality of semiconductor patterns on a substrate including a plurality of first impurity regions doped at a first impurity concentration, a plurality of second impurity regions at portions of the substrate contacting the plurality of semiconductor patterns and doped at a second impurity concentration, a plurality of channel patterns on the plurality of semiconductor patterns, a plurality of gate structures, a plurality of third impurity regions at portions of the substrate adjacent to end portions of the plurality of gate structures, and a plurality of fourth impurity regions at portions of the substrate between the second and third impurity regions and between adjacent second impurity regions. The plurality of fourth impurity regions may be doped at a third impurity concentration which may be lower than the first and second impurity concentrations.
摘要:
A nonvolatile memory device includes a string selection gate and a ground selection gate on a semiconductor substrate, and a plurality of memory cell gates on the substrate between the string selection gate and the ground selection gate. First impurity regions extend into the substrate to a first depth between ones of the plurality of memory cell gates. Second impurity regions extend into the substrate to a second depth that is greater than the first depth between the string selection gate and a first one of the plurality of memory cell gates immediately adjacent thereto, and between the ground selection gate and a last one of the plurality of memory cell gates immediately adjacent thereto. Related fabrication methods are also discussed.