Abstract:
An electronic component assembly is described which comprises a stack of electronic components wherein each electronic component comprises a face and external terminations. A component stability structure is attached to at least one face. A circuit board is provided wherein the circuit board comprises circuit traces arranged for electrical engagement with the external terminations. The component stability structure mechanically engages with the circuit board and inhibits the electronic device from moving relative to the circuit board.
Abstract:
Provided is a high density multi-component package and a method of manufacturing a high density multi-component package. The high density multi-component package comprises at least two electronic components wherein each electronic component of the electronic components comprise a first external termination and a second external termination. At least one interposer is between the adjacent electronic components and attached to the interposer by an interconnect wherein the interposer is selected from an active interposer and a mechanical interposer. Adjacent electronic components are connected serially.
Abstract:
Provided is an improved overvoltage protection element. The overvoltage protection devices comprises at least one ESD protection couple comprising discharge electrodes in a plane, a gap insulator between the discharge electrodes, an overvoltage protection element parallel to the planar discharge electrodes wherein the overvoltage protection element comprises a conductor and an secondary material. The overvoltage protection element also comprises a primary insulator layer between the discharge electrodes and overvoltage protection element.
Abstract:
A protected electric circuit, and method of protecting a protected circuit is provided. The circuit comprises at least one sensitive device wherein the sensitive device operates at a device voltage and has a maximum voltage capability. At least one light emitting diode electrically connected with the sensitive device wherein the light emitting diode has a first trigger voltage wherein the first trigger voltage is above the device voltage and below the maximum voltage capability. When any said extraneous energy above the first trigger energy is experienced the light emitting diode emits photons thereby converting at least some of the extraneous energy to photon energy.
Abstract:
An electronic component is described wherein the electronic component comprises a stack of electronic elements comprising a transient liquid phase sintering adhesive between and in electrical contact with each said first external termination of adjacent electronic elements
Abstract:
An electronic device is described wherein the electronic device comprises a substrate with a first conductive metal layer and a second conductive metal layer. A first microphonic noise reduction structure is in electrical contact with the first conductive metal layer wherein the first microphonic noise reduction layer comprises at least one of the group consisting of a compliant non-metallic layer and a shock absorbing conductor comprising offset mounting tabs with a space there between coupled with at least one stress relieving portion. An electronic component comprising a first external termination of a first polarity and a second external termination of a second polarity is integral to the electronic device and the first microphonic noise reduction structure and the first external termination are adhesively bonded by a transient liquid phase sintering adhesive.
Abstract:
Provided is a high density multi-component package and a method of manufacturing a high density multi-component package. The high density multi-component package comprises at least two electronic components wherein each electronic component of the electronic components comprise a first external termination and a second external termination. At least one interposer is between the adjacent electronic components and attached to the interposer by an interconnect wherein the interposer is selected from an active interposer and a mechanical interposer. Adjacent electronic components are connected serially.
Abstract:
An electronic device is described wherein the electronic device comprises a substrate with a first conductive metal layer and a second conductive metal layer. A first microphonic noise reduction structure is in electrical contact with the first conductive metal layer wherein the first microphonic noise reduction layer comprises at least one of the group consisting of a compliant non-metallic layer and a shock absorbing conductor comprising offset mounting tabs with a space there between coupled with at least one stress relieving portion. An electronic component comprising a first external termination of a first polarity and a second external termination of a second polarity is integral to the electronic device and the first microphonic noise reduction structure and the first external termination are adhesively bonded by a transient liquid phase sintering adhesive.
Abstract:
A discharge capacitor for use in electronic circuits is described. The discharge capacitor has first internal electrodes in electrical contact with a first external termination and second internal electrodes parallel to and interleaved with the first internal electrodes wherein the second internal electrodes are in electrical contact with a second external termination. A dielectric is between the first internal electrodes and adjacent second internal electrodes. A first discharge gap is between at least one first internal electrode of said first internal electrodes and said second external termination.
Abstract:
An improved electronic component is described. The electronic component has a capacitor with first planer internal electrodes in electrical contact with a first termination and second planer internal electrodes in electrical contact with a second termination. A dielectric is between the first planer electrodes and the second planer internal electrodes. The electronic component further comprises at least one of: an inductor comprising a conductive trace wherein said conductive trace is between the first termination and a third termination; and an overvoltage protection component comprising: a third internal electrode contained within the dielectric and wherein the third internal electrode is electrically connected to the first termination; a fourth internal electrode contained within the ceramic and electrically connected to a fourth termination; and a gap between the third internal electrode and the fourth internal electrode.