Abstract:
An electronic device is provided which includes a base, a through-electrode that passes through the base and from which an insulating material on an end face thereof is removed by polishing, a circuit pattern that is formed on an end face of the through-electrode, an electronic component that is disposed via an internal wiring formed on the circuit pattern, an electrode pattern that is formed on the surface of the base opposite to the surface on which the electronic component is disposed and that is connected to the other end face of the through-electrode, an external electrode that is formed on the electrode pattern, and a cap that is bonded to the base so as to protect the electronic component on the base.
Abstract:
There is provided a method of manufacturing a package 1 having a base substrate 10 and a lid substrate 20 bonded to each other and both formed of a glass base material; and a cavity C formed between the both substrates for storing an encapsulated object 2 in a state of being hermetically encapsulated, including: a depression forming step for forming a depression C1 for a cavity which defines the cavity when the both substrates are superimposed to each other on at least one of the both substrates; and a bonding step for superimposing the both substrates so as to store the encapsulated object in the depression and then bonding the both substrates to encapsulate the encapsulated object in the cavity, characterized in that in the depression forming step, printed layers 12 are laminated on an upper surface of a flat plate-shaped glass base material 11 in a frame shape in plan view by screen printing, and then the printed layers and the glass base material are baked at the same time to form the depression.
Abstract:
The piezoelectric vibrator of the invention comprises a base substrate, a lid substrate in which cavity recesses are formed and which is bonded to the base substrate in such a state that the recesses face the base substrate, a piezoelectric vibration member bonded to the upper face of the base substrate in such a state that it is housed in the cavity formed of the recess between the base substrate and the lid substrate, an external electrode formed on the lower face of the base substrate, a through-electrode formed in and through the base substrate and electrically connected with the external electrode with keeping the airtightness inside the cavity, and a routing electrode formed on the upper face of the base substrate to electrically connect the through-electrode to the bonded piezoelectric vibration member; wherein the through-electrode is formed through hardening of a paste containing a plurality of metal fine particles and a plurality of glass beads.
Abstract:
A piezoelectric vibrator which can be manufactured efficiently and a manufacturing method thereof are provided. The piezoelectric vibrator includes: a tuning-fork-type piezoelectric vibrating piece which has a pair of vibration arm portions, excitation electrodes formed on base end portions of the vibration arm portions, and weight metal films formed on distal end portions of the vibration arm portions; and a package which houses the piezoelectric vibrating piece therein. A gettering film on which a laser radiation flaw is formed is formed on intermediate portions between the base end portions and the distal end portions of the vibration arm portions. A first metal film included in the excitation electrode, a second metal film included in the weight metal film and the gettering film are formed using the same material.
Abstract:
The piezoelectric vibrator of the invention comprises a base substrate, a lid substrate in which cavity recesses are formed and which is bonded to the base substrate in such a state that the recesses face the base substrate, a piezoelectric vibration member bonded to the upper face of the base substrate in such a state that it is housed in the cavity formed of the recess between the base substrate and the lid substrate, an external electrode formed on the lower face of the base substrate, a through-electrode formed in and through the base substrate and electrically connected with the external electrode with keeping the airtightness inside the cavity, and a routing electrode formed on the upper face of the base substrate to electrically connect the through-electrode to the bonded piezoelectric vibration member; wherein the through-electrode is formed through hardening of a paste containing a plurality of metal fine particles and a plurality of glass beads.
Abstract:
There is provided a piezoelectric vibrator 1 that includes a base substrate 2, a lid substrate 3, a piezoelectric vibrating reed 4, a pair of external electrodes 38 and 39, a pair of through electrodes 32 and 33, and routing electrodes 36 and 37. The lid substrate 3 includes a recess 3a for a cavity and is bonded to the base substrate so that the recess faces the base substrate. The piezoelectric vibrating reed 4 is bonded to the upper surface of the base substrate so as to be received in a cavity that is formed between both the substrates. The pair of external electrodes 38 and 39 is formed on the lower surface of the base substrate. The pair of through electrodes 32 and 33 is formed by hardening paste P, which contains a plurality of metal fine particles and a plurality of metal beads P1, so as to pass through the base substrate, maintains airtightness in the cavity, and is electrically connected to the pair of external electrodes, respectively. The routing electrodes 36 and 37 are formed on the upper surface of the base substrate and electrically connect the pair of through electrodes to the piezoelectric vibrating reed. The melting point of the metal bead is higher than the firing temperature of the paste.
Abstract:
The piezoelectric vibrator comprises a base substrate; a lid substrate in which cavity recesses are formed and which is bonded to the base substrate in such a state that the recesses face the base substrate; a piezoelectric vibration member bonded to the upper face of the base substrate in such a state that it is housed in the cavity formed of the recess between the base substrate and the lid substrate; an external electrode formed on the lower face of the base substrate; a through-electrode formed in and through the base substrate and electrically connected with the external electrode with keeping the airtightness inside the cavity; and a routing electrode formed on the upper face of the base substrate to electrically connect the through-electrode to the bonded piezoelectric vibration member; wherein the through-electrode is formed of a cylindrical body, which is formed of a glass material to have two flat ends and a thickness substantially equal to that of the base substrate, and is implanted in the through-hole running through the base substrate; and an electroconductive core member which is formed to have two flat ends and a thickness substantially equal to that of the base substrate and is inserted into the center hole of the cylindrical body; and the through-hole, the cylindrical body and the core member are integrally fixed to each other by firing.
Abstract:
There is provided a method of manufacturing piezoelectric vibrators 1. The method includes a process for through holes 35 and 36, which pass through a base substrate wafer, so that openings of the through holes are opened to the outside of the recesses for cavities C; a process for patterning a bonding layer 30, pairs of mounting layers, and pairs of extraction electrode layers 33 and 34 on the upper surface of the base substrate wafer with the same conductive material; and a process for electrically isolating the extraction electrode layers 34 in the middle by irradiating a part (area S2) of the extraction electrode layers 34, which are formed between the bonding layer and openings of through holes 36, with laser light after both the wafers are anodically bonded to each other. The bonding layer 30 surrounds the recesses, the pairs of mounting layers are in the recesses, and the pairs of extraction electrode layers 33 and 34 electrically connect the pairs of mounting layers to the bonding layer.
Abstract:
To provide a quartz crystal vibrator, an oscillator and an electronic apparatus capable of preventing a bonding electrode from being corroded and easily maintaining soundness of the bonding electrode over a long period of time, a quartz crystal vibrator is provided with a quartz crystal vibrating plate formed by surrounding a quartz crystal vibrating piece by a frame-like portion, a hermetically closed vessel including a lid member and a base member in a plate-like shape for interposing the quartz crystal vibrating plate in a thickness direction, bonding electrodes provided between the lid member and the quartz crystal vibrating plate and between the base member and the quartz crystal vibrating plate and electrically connected to an inner electrode, and a protecting film for protecting the bonding electrode, provided with a recess portion recessed to an inner side of the hermetically closed vessel from an outer edge portion between the lid member and the quartz crystal vibrating plate and an outer edge portion between the base member and the quartz crystal vibrating plate, the protecting film is provided at the recess portion and the bonding electrode is disposed on the inner side of the recess portion.
Abstract:
To provide a quartz crystal vibrator, an oscillator and an electronic apparatus capable of preventing a bonding electrode from being corroded and easily maintaining soundness of the bonding electrode over a long period of time, a quartz crystal vibrator is provided with a quartz crystal vibrating plate formed by surrounding a quartz crystal vibrating piece by a frame-like portion, a hermetically closed vessel including a lid member and a base member in a plate-like shape for interposing the quartz crystal vibrating plate in a thickness direction, bonding electrodes provided between the lid member and the quartz crystal vibrating plate and between the base member and the quartz crystal vibrating plate and electrically connected to an inner electrode, and a protecting film for protecting the bonding electrode, provided with a recess portion recessed to an inner side of the hermetically closed vessel from an outer edge portion between the lid member and the quartz crystal vibrating plate and an outer edge portion between the base member and the quartz crystal vibrating plate, the protecting film is provided at the recess portion and the bonding electrode is disposed on the inner side of the recess portion.