Abstract:
Apparatuses and methods of manufacture are disclosed for phase change memory cell electrodes having a conductive barrier material. In one example, an apparatus includes a first chalcogenide structure and a second chalcogenide structure stacked together with the first chalcogenide structure. A first electrode portion is coupled to the first chalcogenide structure, and a second electrode portion is coupled to the second chalcogenide structure. An electrically conductive barrier material is disposed between the first and second electrode portions.
Abstract:
Methods, systems, and devices for fabrication of memory cells are described. An electrode layer may have an initial thickness variation after being formed. The electrode layer may be smoothened prior to forming additional layers of a memory cell, thus decreasing the thickness variation. The subsequent layer fabricated may have a thickness variation that may be dependent on the thickness variation of the electrode layer. By decreasing the thickness variation of the electrode layer prior to forming the subsequent layer, the subsequent layer may also have a decreased thickness variation. The decreased thickness variation of the subsequent layer may impact the electrical behavior of memory cells formed from the subsequent layer. In some cases, the decreased thickness variation of the subsequent layer may allow for more predictable voltage thresholds for such memory cells, thus increasing the read windows for the memory cells.
Abstract:
A semiconductor structure includes a plurality of stack structures overlying a substrate. Each stack structure includes a first chalcogenide material over a conductive material overlying the substrate, an electrode over the first chalcogenide material, a second chalcogenide material over the electrode, a liner on sidewalls of at least one of the first chalcogenide material or the second chalcogenide material, and a dielectric material over and in contact with sidewalls of the electrode and in contact with the liner. Related semiconductor devices and systems, methods of forming the semiconductor structure, semiconductor device, and systems, and methods of forming the liner in situ are disclosed.
Abstract:
Disclosed technology relates generally to integrated circuits, and more particularly, to structures incorporating and methods of forming metal lines including tungsten and carbon, such as conductive lines for memory arrays. In one aspect, a memory device comprises a lower conductive line extending in a first direction and an upper conductive line extending in a second direction and crossing the lower conductive line, wherein at least one of the upper and lower conductive lines comprises tungsten and carbon. The memory device additionally comprises a memory cell stack interposed at an intersection between the upper and lower conductive lines. The memory cell stack includes a first active element over the lower conductive line and a second active element over the first active element, wherein one of the first and second active elements comprises a storage element and the other of the first and second active elements comprises a selector element. The memory cell stack further includes an electrode interposed between the at least one of the upper and lower conductive lines and the closer of the first and second active elements.
Abstract:
Disclosed technology relates generally to integrated circuits, and more particularly, to structures incorporating and methods of forming metal lines including tungsten and carbon, such as conductive lines for memory arrays. In one aspect, a memory device comprises a lower conductive line extending in a first direction and an upper conductive line extending in a second direction and crossing the lower conductive line, wherein at least one of the upper and lower conductive lines comprises tungsten and carbon. The memory device additionally comprises a memory cell stack interposed at an intersection between the upper and lower conductive lines. The memory cell stack includes a first active element over the lower conductive line and a second active element over the first active element, wherein one of the first and second active elements comprises a storage element and the other of the first and second active elements comprises a selector element. The memory cell stack further includes an electrode interposed between the at least one of the upper and lower conductive lines and the closer of the first and second active elements.
Abstract:
Memory cells having a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the memory element and a second portion of the memory element. Memory cells having a select device comprising a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the select device and a second portion of the select device. Manufacturing methods are also described.
Abstract:
Memory cells having a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the memory element and a second portion of the memory element. Memory cells having a select device comprising a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the select device and a second portion of the select device. Manufacturing methods are also described.
Abstract:
Memory cell architectures and methods of forming the same are provided. An example memory cell can include a switch element and a memory element. A middle electrode is formed between the memory element and the switch element. An outside electrode is formed adjacent the switch element or the memory element at a location other than between the memory element and the switch element. A lateral dimension of the middle electrode is different than a lateral dimension of the outside electrode.