摘要:
A semiconductor device includes a semiconductor substrate, a gate insulator film formed on a bottom surface and a side surface of a groove formed in the semiconductor substrate, a gate electrode having a lower portion buried in the groove on whose bottom and side surface the gate insulator film is formed, and an upper portion protruding a surface of said semiconductor substrate, and source region and a drain region formed on a surface of the semiconductor substrate in such a way as to sandwich the gate electrode. A thickness of the upper portion of the gate electrode protruding the surface of the semiconductor substrate is equal to or greater than twice a thickness of the lower portion of the gate electrode buried in the groove.
摘要:
A plurality of storage node electrodes are formed on a semiconductor substrate. A capacitor insulating film is formed on the storage node electrodes. A plate electrode, facing the storage node electrodes, is formed on the capacitor insulating film. A cavity is formed in the plate electrode.
摘要:
In the method of manufacturing a semiconductor device, according to the present invention, first, a dummy gate electrode consisting of a semiconductor layer and a non-metal cap layer formed on the semiconductor layer, is formed above a substrate. Then, diffusion layers are formed respectively on both sides of the dummy gate electrode. The dummy gate is used as a mask here, and thus the diffusion layers are self-aligned respectively with both sides of the dummy gate electrode. The formation of these diffusion layers requires a high-temperature heat treatment, however since the cap layer is made of a non-metal material, it is not melted down even in the high-temperature heat treatment. Next, the cap layer formed on the semiconductor layer is removed, and a gate groove made by the removal is filled with metal. Thus, a metal gate electrode made of a semiconductor layer and a metal layer is completed. As described above, in the present invention, first, a dummy gate electrode is formed of a non-metal cap layer, and the cap layer is removed after the formation of the diffusion layers, followed by filling the created gate groove with a metal. In this manner, the self-alignment of the diffusion layers and the metallization of the gate electrode can be achieved at the same time.
摘要:
A method of manufacturing a semiconductor device comprises the steps of forming a first film and a second film on a semiconductor substrate, selectively removing the second film, the first film and a top portion of the semiconductor substrate to form a first groove, burying a first insulator film in the first groove to form an isolation region, patterning the second film surrounded by the isolation region to form a dummy gate layer, doping the semiconductor substrate with an impurity using the dummy gate layer as a mask, forming a second insulator film on the semiconductor substrate surrounded by the dummy gate layer and the first insulator film, removing the dummy gate layer and the first film to form a second groove, forming a gate insulator film on the semiconductor substrate in the second groove, and forming a gate electrode on the gate insulator film in the second groove.
摘要:
A semiconductor integrated circuit device is disclosed which has an MOSFET with a lightly doped drain or LLD structure. A gate electrode layer is insulatively provided above a semiconductor substrate of p conductivity type. Source and drain layers of n conductivity type are formed in the substrate in such a manner as to be substantially self-aligned with the gate electrode. Each of these source and drain layers is comprised of a heavily doped diffusion layer and a lightly doped diffusion layer. The n- diffusion layer is deep enough to fully surround the heavily doped layer in the substrate. The n- diffusion layer has a step-like cross-section, whereby the effective channel length of MOSFET is increased inside the substrate to increase the punch-through voltage level.
摘要:
A semiconductor manufacturing apparatus comprises a discharge portion discharging a coating liquid onto a substrate; a gas supply tube supplying an inert gas into a liquid container that contains the coating liquid, and pressurizing an interior of the liquid container; a coating liquid supply tube airtightly supplying the coating liquid from the liquid container to the discharge portion using pressurization from the gas supply tube; a first connecting portion capable of attaching and detaching the liquid container to and from the coating liquid supply tube; a second connecting portion capable of attaching and detaching the liquid container to and from the gas supply tube; and a solvent supply tube supplying a solvent, which can dissolve the coating liquid, to the first connecting portion.
摘要:
A resist pattern coating agent includes a hydroxyl group-containing resin, a solvent, and at least two compounds including at least two groups shown by a following formula (1), compounds including a group shown by a following formula (2), and compounds including a group shown by a following formula (4).
摘要:
A semiconductor manufacturing apparatus comprises a discharge portion discharging a coating liquid onto a substrate; a gas supply tube supplying an inert gas into a liquid container that contains the coating liquid, and pressurizing an interior of the liquid container; a coating liquid supply tube airtightly supplying the coating liquid from the liquid container to the discharge portion using pressurization from the gas supply tube; a first connecting portion capable of attaching and detaching the liquid container to and from the coating liquid supply tube; a second connecting portion capable of attaching and detaching the liquid container to and from the gas supply tube; and a solvent supply tube supplying a solvent, which can dissolve the coating liquid, to the first connecting portion.
摘要:
A method of manufacturing a semiconductor device comprises forming a trench in a semiconductor substrate, forming a first insulating film having a first recessed portion in the trench, forming a coating film so as to fill the first recessed portion therewith, transforming the coating film into a second insulating film, planarizing the second insulating film to expose the first insulating film and the second insulating film, removing at least the second insulating film from the first recessed portion to moderate an aspect ratio for the first recessed portion formed in the trench, thereby forming a second recessed portion therein, and forming a third insulating film on a surface of the semiconductor substrate so as to fill the second recessed portion therewith.
摘要:
An immersion exposure system 1 performs an exposure process through a liquid 301 provided between an optical element of a projection optical means 121 and a substrate 111. The immersion exposure system 1 includes a liquid supply section 80 which supplies the liquid 301, an exposure section to which the liquid 301 (301b) supplied from the liquid supply section 80 is continuously introduced along a specific direction and which performs an exposure process in a state in which a space between the optical element of the projection optical means 121 and the substrate 111 is filled with the liquid 301, a liquid recovery section 90 which recovers the liquid 301 (301a) passed through the exposure section 110 at a symmetrical position against the substrate 111, and a liquid recycling section 20 which recycles the liquid 301 (301c) recovered by the liquid recovery section 90. The properties of the immersion exposure liquid can be stabilized when applying an immersion method, whereby exposure can be advantageously and continuously performed, and running cost can be reduced.