摘要:
A semiconductor integrated circuit device is disclosed which has an MOSFET with a lightly doped drain or LLD structure. A gate electrode layer is insulatively provided above a semiconductor substrate of p conductivity type. Source and drain layers of n conductivity type are formed in the substrate in such a manner as to be substantially self-aligned with the gate electrode. Each of these source and drain layers is comprised of a heavily doped diffusion layer and a lightly doped diffusion layer. The n- diffusion layer is deep enough to fully surround the heavily doped layer in the substrate. The n- diffusion layer has a step-like cross-section, whereby the effective channel length of MOSFET is increased inside the substrate to increase the punch-through voltage level.
摘要:
A P channel MIS type semiconductor device have P type source and drain regions formed in a N type semiconductor substrate. Each source and drain regions are constructed the low and high impurity concentration layers. Channel side edges of the low concentration impurity layers arranged inside of the high concentration impurity layers. These double layer source and drain structure prevent the off set gate construction and the parasitic resistance.
摘要:
A semiconductor device includes a substrate including a semiconductor and a trench, and an electrically rewritable semiconductor memory cell on the substrate, the semiconductor memory cell comprising a charge storage layer including an upper surface and a lower surface, an area of the lower surface being smaller than an area of the upper surface, and at least a part of the charge storage layer being provided in the trench, first insulating layer between the lower surface of the charge storage layer and a bottom surface of the trench, second insulating layer between a side surface of the trench and a side surface of the charge storage layer and between the side surface of the trench and a side surface of the first insulating layer, third insulating layer on the charge storage layer, and a control gate electrode on the third insulating layer.
摘要:
There is disclosed a method of manufacturing a semiconductor device, wherein an Si3N4 film is formed as a mask member on the surface of a silicon substrate, then etched to form an STI trench. A solution of perhydrogenated silazane polymer is coated on the surface of the silicon substrate having an STI trench formed thereon to deposit a coated film (PSZ film) thereon. The PSZ film deposited on the mask member is removed, leaving part of the PSZ film inside the trench, wherein the thickness of the PSZ film is controlled to make the height thereof from the bottom of the STI trench become 600 nm or less. Thereafter, the PSZ film is heat-treated in a water vapor-containing atmosphere to convert the PSZ film into a silicon oxide film through a chemical reaction of the PSZ film. Subsequently, the silicon oxide film is heat-treated to densify the silicon oxide film.
摘要翻译:公开了一种制造半导体器件的方法,其中在硅衬底的表面上形成Si 3 N 4 N 4膜作为掩模构件,然后蚀刻形成 一个STI沟槽。 将过氢化硅氮烷聚合物的溶液涂布在其上形成有STI沟槽的硅衬底的表面上,以在其上沉积涂膜(PSZ膜)。 去除沉积在掩模构件上的PSZ膜,使PSZ膜的一部分留在沟槽内,其中控制PSZ膜的厚度使其从STI沟槽底部的高度变为600nm以下。 然后,在含水蒸汽的气氛中对PSZ膜进行热处理,通过PSZ膜的化学反应将PSZ膜转换为氧化硅膜。 随后,对氧化硅膜进行热处理以使氧化硅膜致密化。
摘要:
Disclosed is a semiconductor device comprising an underlying insulating film having a depression, a semiconductor structure which includes a first semiconductor portion having a portion formed on the underlying insulating film and a first overlap portion which overlaps the depression, a second semiconductor portion having a portion formed on the underlying insulating film and a second overlap portion which overlaps the depression, and a third semiconductor portion disposed between the first and second semiconductor portions and having a portion disposed above the depression, wherein overlap width of the first overlap portion and overlap width of the second overlap portion are equal to each other, a gate electrode including a first electrode portion covering upper and side surfaces of the third semiconductor portion and a second electrode portion formed in the depression, and a gate insulating film interposed between the semiconductor structure and the gate electrode.
摘要:
A semiconductor device includes a semiconductor substrate, first isolation area on the substrate including first and second trenches, first insulating film in the trenches protruding above the surface, with respect to channel width direction, distance between first insulating film on first and second trenches at position higher than the surface being longer than the distance at a position of the surface, and a memory cell having the channel width direction and provided on the substrate including second insulating film on the surface between first and second trenches, control gate above second insulating film, floating gate between control gate and second insulating film, with respect to dimension in the direction, an upper side of floating gate facing control gate being larger than a lower side of floating gate facing second insulating film, and with respect to the direction, displacement of floating gate to first and second trenches being approximately equal.
摘要:
A method of manufacturing a semiconductor device comprising the steps of forming a dummy film and a dummy gate pattern at a predetermined gate-forming region on a semiconductor substrate, forming a first side wall insulating film on a side wall of the dummy gate pattern, forming an interlayer insulating film on a portion of the semiconductor substrate around the dummy gate pattern bearing the first side wall insulating film, forming a groove by removing the dummy gate pattern, removing a portion of dummy film exposed through the groove while leaving a portion of the first side wall insulating film as well as a portion of the dummy film disposed below the portion of the first side wall insulating film, forming a gate insulating film at least on a bottom surface of the groove, and forming a gate electrode on the gate insulating film formed in the groove.
摘要:
A semiconductor device includes a semiconductor substrate on which an element is formed, a lower wiring formed on the semiconductor substrate, and an upper wiring formed on and connected to the lower wiring. The upper wiring includes a plurality of regions having different thicknesses in a continuous wiring region excluding a connection region for connecting the upper and lower wirings.
摘要:
A semiconductor memory device has a semiconductor substrate, a first semiconductor region of a first conduction type formed on the semiconductor substrate, a second semiconductor region of a second conduction type opposite to the first conduction type, formed on the first semiconductor region. A trench capacitors having a trench extends through the first semiconductor region and the second semiconductor region, and is formed such that its top does not reach a top surface of the second semiconductor region, and the trench is formed therein with a conductive trench fill. A pair of gate electrodes is formed on the second semiconductor region, overlying the trench capacitor. A pair of insulating layers is formed to cover each of the pair of gate electrodes. A conductive layer is formed between the pair of insulating layers to self-align to each of the pair of insulating layers. The conductive layer has a leading end insulated from the second semiconductor region and reaching the interior of the second semiconductor region, and electrically connected to the conductive trench fill of the trench capacitor. A pair of third semiconductor regions of the first conduction type are formed in the second semiconductor region, and positioned opposite to each other with respect to the conductive layer. Each of the third semiconductor regions is directly in contact with the conductive layer, and constitutes either a source or a drain of transistors having one of the pair of gate electrodes, respectively. The pair of third semiconductor regions is formed substantially to a uniform depth.
摘要:
A method for fabricating a capacitor comprises the steps of: forming a lower electrode of a metal over a substrate; forming a capacitor dielectric film of an oxide dielectric film on the lower electrode; depositing a metal film on the capacitor dielectric film; performing a thermal processing in a hydrogen-content atmosphere after the step of depositing the metal film; and patterning the metal film to form an upper electrode of the metal film after the step of performing the thermal processing. Thus, the adhesion between the upper electrode and the capacitor dielectric film is improved, and capacitor characteristics can be improved.