Abstract:
The present invention discloses an X-ray beam intensity monitoring device and an X-ray inspection system. The X-ray beam intensity monitoring device comprises an intensity detecting module and a data processing module, wherein the intensity detecting module is adopted to be irradiated by the X-ray beam and send a detecting signal, the data processing module is coupled with the intensity detecting module to receive the detecting signal and output an X-ray beam intensity monitoring signal, wherein the X-ray beam intensity monitoring signal includes a dose monitoring signal for the X-ray beam and a brightness correction signal for correcting signal values of the X-ray beam. The X-ray beam intensity monitoring device can simultaneously perform dose monitoring and brightness monitoring, thereby improving the service efficiency of the X-ray beam intensity monitoring device. Moreover, the monitoring result of the X-ray beam intensity can be more accurate and reliable.
Abstract:
The present disclosure provides an ion migration tube and a method of operation the same. The ion migration tube includes an interior space and an ion gate disposed within the interior space, the interior space includes an ionization region having an absolute value of potential V1 and a migration region. An ion gate is disposed between the ionization region and the migration region and includes a first ion gate grid having an absolute value of potential V2 and a second ion gate grid having an absolute value of potential V3, the migration region comprises at least a first migration region electrode having an absolute value of potential V4 and a second migration region electrode having an absolute value of potential V5. When the ion gate is opened, a potential well is formed for ionized ions between the first ion gate grid and the first migration region electrode so as to compress an ion group entering the migration region.
Abstract:
A sampling device and an inspection apparatus are disclosed. In one aspect, an example gathering and sampling device includes a cylindrical outer housing and an inner housing disposed within the cylindrical outer housing, a cyclone chamber is formed between the cylindrical outer housing and the inner housing to generate a cyclone by injecting a gas flow into the cyclone chamber. The gathering and sampling device further includes an outer chamber body, and a plurality of gas injection orifices formed in the first inner housing end opening of the inner housing and configured to inject a gas towards a substantial center of a circular region defined by an end face of the first outer housing end opening of the cylindrical outer housing.
Abstract:
The present application relates to a dual energy detector and a radiation inspection system. The dual energy detector comprises: a detector module mount and a plurality of detector modules. The detector module includes a higher energy detector array and a lower energy detector array, which are juxtaposedly provided on said detector module mount to be independently irradiated. The present application may simplify the arrangement of the photodiodes and printed circuit boards to which the higher and lower energy detector arrays are connected, such that necessary thickness dimension of the detector module mount is reduced, thereby facilitating the installation and use of the dual energy detector of the present application. On the other hand, the radiation beam in the present application may be independently irradiated to the higher and lower energy detector arrays juxtaposed to each other, which reduces to certain extent the mutual restriction during selection of the higher and lower energy detector arrays.
Abstract:
This disclosure provides a radiation detection apparatus and a method, a data processing method and a processor, which relates to the field of radiation detection technology. Wherein, the radiation detection apparatus of this disclosure comprises: a radiation detector which generates an electrical signal by interacting with X-rays; an Analog-to-Digital Converter (ADC) which is coupled to the radiation detector and transmits the electrical signal to a waveform data; and a data processor which receives the waveform data from the ADC, determines the number of single photon signals according to the waveform data, and determines whether an integral signal and/or a count signal of the waveform data will be used for imaging according to the number of the single photon signals.
Abstract:
A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
Abstract:
A sampling device and a gas curtain guide are disclosed. In one aspect, the sampling device includes a chamber body. The chamber body includes a sample inlet, located at a first end of the chamber body, configured for suction of a sample. The chamber body further includes a sample outlet, located adjacent to a second end opposite to the first end of the chamber body, configured to discharge the sample. The chamber body further includes a gas inflation inlet, in a wall of the chamber body, configured to introduce a swirl gas flow into the chamber body. The chamber body further includes a gas exhaust opening configured to discharge gas so as to, together with the gas inflation inlet, generate a tornado type gas flow in the chamber body, which moves spirally from the first end to the second end of the chamber body.
Abstract:
The present invention discloses a gantry configuration for a combined mobile radiation inspection system comprising a first arm frame, a second arm frame and a third arm frame. The first, second and third arm frames define a scanning channel to allow an inspected object to pass therethrough. The gantry configuration for the combined mobile radiation inspection system further comprises a position sensing device configured to detect a position error between the first arm frame and the second arm frame; and a controller configured to control a moving speed of at least one of the first arm frame and the second arm frame based on the detected position error, so that the position error between the first arm frame and the second arm frame is equal to zero. Compared with the prior art, the present invention is advantageous at least in that an automatic deviation correction device is provided on the gantry arm frame, and thus the position error between both side arm frames can be automatically controlled to zero, so that the gantry arm frame can be effectively prevented from being subjected to a force and deforming, and the radiation detector can receive the full ray, thereby improving the imaging quality.
Abstract:
The present disclosure is directed to a low cost sintering process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics, comprising uniaxial hot pressing primary sintering and hot isostatic pressing secondary sintering.
Abstract translation:本公开涉及用于制备具有通式Gd 2 O 2 S(称为GOS,闪烁陶瓷)的钆硫氧化物的低成本烧结方法,其包括单轴热压一次烧结和热等静压二次烧结。
Abstract:
The present disclosure provides a High-Purity Germanium (HPGe) detector, comprising: a HPGe single crystal having an intrinsic region exposed surface; a first electrode and a second electrode connected to a first contact electrode and a second contact electrode of the HPGe single crystal respectively; and a conductive guard ring arranged in the intrinsic region exposed surface around the first electrode to separate the intrinsic region exposed surface into an inner region and an outer region. A leakage current derived from the intrinsic region exposed surface of the HPGe detector can be separated from the current of the HPGe detector by the conductive guard ring provided in the surface, thereby suppressing the interference of the surface leakage current.