Abstract:
A server may include a communication circuit communicating with a user terminal, storage including a fingerprint DB storing fingerprints corresponding to a plurality of points and a signal fluctuation probability DB, and a processor electrically connected to the communication circuit and the storage. The processor may be configured to store similarity between first signal strength and second signal strength, which are determined based on a probability that a pair of the first signal strength and the second signal strength received from a first AP occurs with respect to fingerprints corresponding to a first point, in the signal fluctuation probability DB, to obtain a fingerprint including signal strength received from the first AP, from the user terminal, and to determine a location of the user terminal based on the obtained fingerprint and the signal fluctuation probability DB.
Abstract:
Surgical trocars, and image acquisition method using the same, include a body having a passage configured to receive at least one surgical instrument, and at least one camera movably coupled to an outer wall of the body.
Abstract:
A robot cleaner includes a housing a sensor assembly disposed in the housing, wherein the sensor assembly comprises a light source configured to emit light toward an area in front of the housing; a camera unit comprising a lens; a reflector configured to reflect light incident on a front of the housing toward a front region of the lens; and a guide member hollow inside configured to guide light incident on a top of the housing toward a rear region of the lens. The robot cleaner estimates a current position of the robot cleaner more accurately by correcting the current position of the robot cleaner estimated by using odometry information based on images acquired by the camera unit.
Abstract:
Embodiments of the present disclosure relate to a robot cleaner and a control method of the robot cleaner, more particularly, to a robot cleaner configured to correct position information of the robot cleaner by acquiring a position of a docking station during the robot clear drives and to correct a map by using corrected position information, and a control method of the robot cleaner.
Abstract:
A radiographic apparatus may comprise: a radiation irradiating module configured to irradiate radiation to an object; and/or a processing module configured to automatically set a part of a region to which the radiation irradiating module is able to irradiate the radiation, to a region of interest, and further configured to determine at least one of a radiation irradiation position and a radiation irradiation zone of the radiation irradiating module based on the region of interest.
Abstract:
A robot that moves to a position indicated by a remote device, and a method for controlling the moving robot. The moving robot according to an embodiment includes a traveling unit that moves a main body, a light reception unit that receives light, and a control unit that determines a traveling direction of the moving robot by filtering the light received from the light reception unit in accordance with a probability-based filtering method, and controls the traveling unit so that the main body travels in the traveling direction.
Abstract:
A method for controlling a surgical robot includes calculating an external force acting on a robot arm mounted with a surgical instrument, filtering the external force acting on the robot arm when a central point of an incision is set, calculating a virtual force to enable the surgical instrument which is positioned away from the central point of the incision to return to the central point of the incision, and applying the calculated virtual force to the filtered external force, to control movement of the robot arm. As a result, it is possible to compactly design the surgical robot and thereby reduce the volume of the surgical robot.
Abstract:
A medical robot system and a method to control the medical robot system are used to detect position information of a surgical instrument in an incised region, thereby improving the safety of robotic surgery. A surgical instrument may be inserted in a through-hole of a trocar inserted into an incised region of a patient. The medical robotic system includes a surgical instrument position detection apparatus to detect position information of the surgical instrument in the through-hole of the trocar, when the surgical instrument is inserted into the through-hole. The medical robotic system further includes a console to control an operation of a surgical robot having the surgical instrument, based on the detected position information of the surgical instrument.
Abstract:
A robot includes a master device including an input unit, the input unit including a first end effector and a first joint, a slave device configured to be controlled by the master device and including a robot arm, the robot arm including a second end effector, a second joint, and a motor configured to drive the second joint, and a controller configured to calculate a friction compensation value to compensate for friction of the second joint based on a speed of the input unit in response to the input unit being in motion, generate a control signal based on the friction compensation value, and transmit the control signal to the motor configured to drive the second joint.
Abstract:
A robot and method of controlling the same are provided. The robot includes a hand and an arm, a grip sensor unit configured to enable the hand to sense an object, a grip control unit configured to determine whether the hand grips the object from gripping information obtained from the grip sensor unit, select an object-based coordinate to control the hand and the arm based on a motion of the object or an independent coordinate to independently control the hand and the arm according to a result of the determination, and control the hand and the arm based on the selected coordinate, and a coordinate transformation unit configured to calculate a position and a direction of a virtual object based on the object-based coordinate, and deliver information about the position and the direction of the virtual object calculated to the grip control unit.