摘要:
A method and an apparatus for removing polymer from a substrate are provided. In one embodiment, an apparatus utilized to remove polymer from a substrate includes a processing chamber having a chamber wall and a chamber lid defining a process volume, a substrate support assembly disposed in the processing chamber, a remote plasma source coupled to the processing chamber through an outlet port formed through the processing chamber, the outlet port having an opening pointing toward an periphery region of a substrate disposed on the substrate support assembly, and a substrate supporting surface of the substrate support assembly that substantially electrically floats the substrate disposed thereon relative to the substrate support assembly.
摘要:
The present disclosure generally relates to the testing of a system that includes software or hardware components. In some embodiments, a testing framework generates a set of test cases for a system under test using a grammar. Each test case may perform an action, such as provide an input to the system under test, and result in an output from the system under test. The inputs and outputs are then compared to the expected results to determine whether the system under test is performing correctly. Prior to generating the set of test cases from the grammar, the testing framework processes the grammar to identify attributes of the test cases to be derived from the grammar and facilitates the modification of the grammar.
摘要:
A plasma reactor includes a vacuum enclosure including a side wall and a ceiling defining a vacuum chamber, and a workpiece support within the chamber and facing the ceiling for supporting a planar workpiece, the workpiece support and the ceiling together defining a processing region between the workpiece support and the ceiling. Process gas inlets furnish a process gas into the chamber. A plasma source power electrode is connected to an RF power generator for capacitively coupling plasma source power into the chamber for maintaining a plasma within the chamber. The reactor further includes at least a first overhead solenoidal electromagnet adjacent the ceiling, the overhead solenoidal electromagnet, the ceiling, the side wall and the workpiece support being located along a common axis of symmetry.
摘要:
A plasma etch process for etching high aspect ratio openings in a dielectric film on a workpiece is carried out in a reactor having a ceiling electrode overlying the workpiece and an electrostatic chuck supporting the workpiece. The process includes injecting a polymerizing etch process gas through at least one of plural concentric gas injection zones of the ceiling electrode and injecting an inert diluent gas through at least a selected one of the plural gas injection zones of the ceiling electrode and apportioning respective flow rates of the diluent gas through respective ones of the gas injection zones in accordance with the distribution among corresponding concentric zones of the workpiece of etch profile tapering. The process further includes evacuating gas from the reactor through a pumping annulus surrounding an edge of the workpiece, and etching the high aspect ratio openings in the dielectric film with etch species derived from the etch process gas while depositing a polymer derived from the etch process gas onto the workpiece, by generating a plasma in the reactor.
摘要:
A plasma etch process for etching a workpiece is carried out in a plasma reactor having a ceiling electrode overlying the process region with plural concentric gas injection zones. The process includes injecting process gases with different compositions of chemical species through different ones of the gas injection zones to establish a distribution of chemical species among the plural gas injection zones. The process gases include fluorine-rich polymerizing etch gases that promote a high etch rate, carbon-rich polymerizing etch gases that promote a high polymer deposition rate, polymer management gases (e.g., oxygen or nitrogen) that retard polymer deposition rate and an inert diluent gas that reduces etch profile tapering. The method further includes distributing the processes gases among the plural gas injection zone so that (a) the fluorine-rich etch process gases have the highest flow rate over zones of the workpiece tending to have the lowest etch rate, (b) the carbon-rich etch process gases have the highest flow rate over zones of the workpiece tending to have the highest etch rate, (c) the polymer management gases have the highest flow rate over zones of the workpiece tending to have the highest tendency for etch stop, (d) the inert diluent gas has the highest flow rate over zones of the workpiece tending to have the greatest etch profile tapering.
摘要:
A method of processing a workpiece in a plasma reactor having an electrostatic chuck for supporting the workpiece within a reactor chamber, the method including circulating a coolant through a refrigeration loop that includes inner and outer zone evaporators inside respective inner and outer zones of the electrostatic chuck, while pressurizing inner and outer zones of a workpiece-to-chuck interface with a thermally conductive gas, and sensing conditions in the chamber including inner and outer zone temperatures near the workpiece. The method further includes obtaining the next scheduled change in RF heat load on the workpiece and using thermal modeling to estimate respective changes in thermal conditions of the coolant in the inner and outer zone evaporators, respectively, that would hold temperatures measured in the inner and outer electrostatic chuck zones, respectively, nearly constant by compensating for the next scheduled change in RF heat load, and making the respective changes in thermal conditions of the coolant in inner and outer zone evaporators prior to the time of the next scheduled change by a head start related to the thermal propagation delay through the electrostatic chuck.
摘要:
A plasma reactor with a reactor chamber and an electrostatic chuck having a surface for holding a workpiece inside the chamber includes a backside gas pressure source coupled to the electrostatic chuck for applying a thermally conductive gas under a selected pressure into a workpiece-surface interface formed whenever a workpiece is held on the surface, and an evaporator inside the electrostatic chuck and a refrigeration loop having an expansion valve for controlling flow of coolant through the evaporator. The reactor further includes a temperature sensor in the electrostatic chuck, a thermal model capable of simulating heat transfer between the evaporator and the surface based upon measurements from the temperature sensor and an agile control processor coupled to the thermal model and governing the backside gas pressure source in response to predictions from the model of changes in the selected pressure that would bring the temperature measured by the sensor closer to a desired temperature.
摘要:
A method of processing a workpiece in a plasma reactor having an electrostatic chuck for holding a workpiece in a chamber of the reactor includes providing a thermally conductive gas under pressure between a backside of the workpiece and a top surface of the electrostatic chuck, controlling the temperature of the electrostatic chuck, defining a desired workpiece temperature, measuring a current workpiece temperature or temperature related to the workpiece temperature and inputting the measured temperature to a thermal model representative of the electrostatic chuck. The method further includes determining from the thermal model a change in the pressure of the thermally conductive gas that would at least reduce the difference between the measured temperature and the desired temperature, and changing the pressure of the thermally conductive gas in accordance with the change determined from the thermal model.
摘要:
A plasma reactor having a reactor chamber and an electrostatic chuck having a surface for holding a workpiece inside the chamber includes inner and outer zone backside gas pressure sources coupled to the electrostatic chuck for applying a thermally conductive gas under respective pressures to respective inner and outer zones of a workpiece-surface interface formed whenever a workpiece is held on the surface, and inner and outer evaporators inside respective inner and outer zones of the electrostatic chuck and a refrigeration loop having respective inner and outer expansion valves for controlling flow of coolant through the inner and outer evaporators respectively. The reactor further includes inner and outer zone temperature sensors in inner and outer zones of the electrostatic chuck and a thermal model capable of simulating heat transfer through the inner and outer zones, respectively, between the evaporator and the surface based upon measurements from the inner and outer temperature sensors, respectively. Inner and outer zone agile control processors coupled to the thermal model govern the inner and outer zone backside gas pressure sources, respectively, in response to predictions from the model of changes in the respective pressures that would bring the temperatures measured by the inner and outer zone sensors, respectively, closer to a desired temperature.
摘要:
A method of processing a workpiece in a plasma reactor includes coupling RF power from at least three RF power source of three respective frequencies to plasma in the reactor, setting ion energy distribution shape by selecting a ratio between the power levels of a first pair of the at least three RF power sources, and setting ion dissociation and ion density by selecting a ratio between the power levels of a remaining one of the three RF power sources and an applied magnetic field. The three respective frequencies can be an LF frequency, an HF frequency and a VHF frequency, wherein the first pair corresponds to the LF and HF frequencies and the second pair corresponds to the HF and VHF frequencies.