Abstract:
A cap assembly having a storage chamber for a secondary ingredient, which is adapted to a mouth of a container, comprising: a body having a mouth; a chamber part having a storage space for secondary ingredient in the body and a hole formed at the lower end thereof; said chamber part is sealed by a movable working member and is opened when the movable working member is removed from the hole upon removing the cap so that the secondary ingredient may be mixed with the first ingredient in the container, said the movable working member being adapted to maintain the opened hole, after moving to open the hole, thereby effectively mixing of the different ingredients.
Abstract:
The bottle cap, this invention, is designed to be suitable for the container necks of different size. As recommended, the bottle cap with two connection sections may be assembled in the container necks showing the different sizes of 26.78 MM and 28.0 MM.
Abstract:
A cap assembly mounted on a neck of a container for containing a ingredient different from that in accommodated in a container comprises a cap body having an inner housing formed with a chamber for storage of a secondary ingredient and a working member adapted to open a low end opening of the chamber to allow the secondary ingredient in the chamber of the inner housing to be mixed with a primary ingredient in the container. The mixed ingredients may be discharged through an opening.
Abstract:
There are provided a nanowire filter, a method for manufacturing the same, a filtering apparatus having the same, and a method for removing material adsorbed on the nanowire filter. The filtering apparatus includes: a filter having a supporting member and a plurality of nanowires supported on the supporting member and arranged in a crystallized state; and a body into which the filter is inserted and secured, and which has an inlet for guiding an introduced fluid to the filter and an outlet for discharging the fluid filtered through the filter to the outside.
Abstract:
A structure for mixing different materials in a pouch container includes a spout main body provided with a spout hole through which mixture of first and second materials is exhausted; a cap removably coupled on an outer portion of the spout hole and storing the first material therein; and a seal member coupled to a lower end of the tube portion.
Abstract:
Provided are a Schottky barrier tunnel transistor (SBTT) and a method of fabricating the same. The SBTT includes a buried oxide layer formed on a base substrate layer and having a groove at its upper surface; an ultra-thin silicon-on-insulator (SOI) layer formed across the groove; an insulating layer wrapping the SOI layer on the groove; a gate formed to be wider than the groove on the insulating layer; source and drain regions each positioned at both sides of the gate, the source and drain regions formed of silicide; and a conductive layer for filling the groove. In the SBTT, the SOI layer is formed to an ultra-thin thickness to minimize the occurrence of a leakage current, and a channel in the SOI layer below the gate is completely wrapped by the gate and the conductive layer, thereby improving the operational characteristics of the SBTT.
Abstract:
A lateral resonant tunneling transistor having two non-symmetric quantum dots is disclosed. When a negative voltage is supplied to each plurality of thin split gates, two non-symmetric quantum dots are formed owing to the formation of the potential barrier. Thus when a forward bias voltage is applied, the resonant tunneling phenomena occur twice successively. Through these two successive resonant tunneling phenomena and by lowering the height of the third potential barrier 6a, the resonant tunneling current can be maximized.
Abstract:
A quantum interference device comprises a semi-insulating GaAs substrate; GaAs and AlGaAs layers sequentially formed with high purity on the substrate; a two-dimensional electron gas layer formed in the GaAs layer and serving as a channel; source/drain regions formed on the semi-insulating GaAs substrate and at both ends of a laminated portion composed of the GaAs/AlGaAs layers; and a gate formed on the AlGaAs layer and having a periodic structure wherein the length thereof varies in a periodic manner in a transverse direction. In the device, the electron gas layer formed in the GaAs layer is used as an electron path, and the phases of electrons passing along different electron paths are caused to interfere with each other by the gate, thereby causing the current of a drain therein to be maximized or minimized. The transconductance can be significantly increased.
Abstract:
A bottle cap that is an apparatus for containing heterogeneous materials, applied in the discharge direction of materials in a container, comprises: a main body coupled to a bottle neck; and a containing unit assembled inside the main body with a storage space. An activated unit is assembled in the center of the upper support unit of the main body. An activation unit for downward movement is coupled to the activated unit so that the activated unit may move downward by a separate activation unit. An opening/closing unit is coupled with the lower part of the activated unit with the above structure in order to seal an opening/closing hole of the storage space.
Abstract:
Disclosed is a connection device to be coupled with a container neck in different standards for use. The connection device is formed with a mouth part at the upper side and a screw thread part at the lower side. The mouth part at the upper portion of the connection device is formed in a screw thread or other shape in the standard corresponding to a bottle lid, and the inside of the screw thread part is formed with a screw thread corresponding to the standard of the container neck. The screw thread is integrally formed or an elastic screw thread is additionally added for the coupling with the necks of a plurality of containers.