摘要:
Provided are a Schottky barrier tunnel transistor (SBTT) and a method of fabricating the same. The SBTT includes a buried oxide layer formed on a base substrate layer and having a groove at its upper surface; an ultra-thin silicon-on-insulator (SOI) layer formed across the groove; an insulating layer wrapping the SOI layer on the groove; a gate formed to be wider than the groove on the insulating layer; source and drain regions each positioned at both sides of the gate, the source and drain regions formed of silicide; and a conductive layer for filling the groove. In the SBTT, the SOI layer is formed to an ultra-thin thickness to minimize the occurrence of a leakage current, and a channel in the SOI layer below the gate is completely wrapped by the gate and the conductive layer, thereby improving the operational characteristics of the SBTT.
摘要:
An ultra small-sized SOI MOSFET having a high integration density, low power consumption, but high performances, and a method of fabricating the same are provided. The method includes preparing a SOI substrate on which a monocrystalline silicon layer is formed, forming a first dielectric material layer doped with impurities of a first conductivity type on the SOI substrate, forming an opening to expose the monocrystalline silicon layer etching at least part of the first dielectric material layer, forming a channel region injecting impurities of a second conductivity type into the monocrystalline silicon layer exposed by the opening, forming a source region and a drain region in the monocrystalline silicon layer diffusing the impurities of the first dielectric material layer using heat treatment, forming a gate dielectric layer in the opening on the channel region, forming a gate electrode on the gate dielectric layer to fit in the opening, forming a second dielectric material layer on the entire surface of the SOI substrate on which the gate electrode is formed, forming contact holes to expose the gate electrode, the source region, and the drain region etching part of the second dielectric material layer, and forming metal interconnections to bury the contact holes.
摘要:
In a process for manufacturing a hyperfine semiconductor device, an apparatus for manufacturing a semiconductor device such as a schottky barrier MOSFET and a method for manufacturing the semiconductor device using the same are provided. Two chambers are connected with each other. A cleaning process, a metal layer forming process, and subsequent processes can be performed in situ by using the two chambers, thereby the attachment of the unnecessary impurities and the formation of the oxide can be prevented and the optimization of the process can be accomplished.
摘要:
A Schottky barrier tunnel transistor includes a gate electrode, and source and drain regions. The gate electrode is formed over a channel region of a substrate to form a Schottky junction with the substrate. The source and drain regions are formed in the substrate exposed on both sides of the gate electrode.
摘要:
Provided is a method for fabricating a Schottky barrier tunnel transistor (SBTT) that can fundamentally prevent the generation of a gate leakage current caused by damage of spacers formed on both sidewalls of a gate electrode. The method for fabricating a Schottky barrier tunnel transistor, which includes: a) forming a silicon pattern and a sacrificial pattern on a buried oxide layer supported by a support substrate; b) forming a source/drain region on the buried oxide layer exposed on both sides of the silicon pattern, the source/drain region being formed of a metal layer and being in contact with both sidewalls of the silicon pattern; c) removing the sacrificial pattern to expose the top surface of the silicon pattern; and d) forming a gate insulating layer and a gate electrode on the exposed silicon pattern.
摘要:
A Schottky barrier tunnel transistor includes a gate electrode, and source and drain regions. The gate electrode is formed over a channel region of a substrate to form a Schottky junction with the substrate. The source and drain regions are formed in the substrate exposed on both sides of the gate electrode.
摘要:
Provided is a method for fabricating a Schottky barrier tunnel transistor (SBTT) that can fundamentally prevent the generation of a gate leakage current caused by damage of spacers formed on both sidewalls of a gate electrode. The method for fabricating a Schottky barrier tunnel transistor, which includes: a) forming a silicon pattern and a sacrificial pattern on a buried oxide layer supported by a support substrate; b) forming a source/drain region on the buried oxide layer exposed on both sides of the silicon pattern, the source/drain region being formed of a metal layer and being in contact with both sidewalls of the silicon pattern; c) removing the sacrificial pattern to expose the top surface of the silicon pattern; and d) forming a gate insulating layer and a gate electrode on the exposed silicon pattern.
摘要:
A Schottky barrier tunnel transistor includes a gate electrode, and source and drain regions. The gate electrode is formed over a channel region of a substrate to form a Schottky junction with the substrate. The source and drain regions are formed in the substrate exposed on both sides of the gate electrode.
摘要:
Provided are an apparatus and method for detecting biomolecules. The apparatus includes a FET having a substrate, a source electrode, a drain electrode, a channel region between the source and drain electrodes, and probe molecules fixed to the channel region, wherein the source and drain electrodes are separated on the substrate, a microfluid supplier selectively supplying one of a reference buffer solution of low ionic concentration and a reaction solution of high ionic concentration containing target molecules, to the channel region of the FET to which the probe molecules are fixed, and a biomolecule detector detecting the target molecules by measuring a first current value of the channel region of the FET, and a second current value of the channel region of the FET to which the target molecules and the probe molecules that bind to each other in the reaction solution of high ionic concentration are fixed.
摘要:
Provided is a Schottky barrier nanowire field effect transistor, which has source/drain electrodes formed of metal silicide and a channel formed of a nanowire, and a method for fabricating the same. The Schottky barrier nanowire field effect transistor includes: a channel suspended over a substrate and including a nanowire; metal silicide source/drain electrodes electrically connected to both ends of the channel over the substrate; a gate electrode disposed to surround the channel; and a gate insulation layer disposed between the channel and the gate electrode.