摘要:
There is provided an SOI-MISFET including: an SOI layer; a gate electrode provided on the SOI layer interposing a gate insulator; and a first elevated layer provided higher in height from the SOI layer than the gate electrode at both sidewall sides of the gate electrode on the SOI layer so as to constitute a source and drain. Further, there is also provided a bulk-MISFET including: a gate electrode provided on a silicon substrate interposing a gate insulator thicker than the gate insulator of the SOI MISFET; and a second elevated layer configuring a source and drain provided on a semiconductor substrate at both sidewalls of the gate electrode. The first elevated layer is thicker than the second elevated layer, and the whole of the gate electrodes, part of the source and drain of the SOI-MISFET, and part of the source and drain of the bulk-MISFET are silicided.
摘要:
A non-volatile semiconductor memory device with good write/erase characteristics is provided. A selection gate is formed on a p-type well of a semiconductor substrate via a gate insulator, and a memory gate is formed on the p-type well via a laminated film composed of a silicon oxide film, a silicon nitride film, and a silicon oxide film. The memory gate is adjacent to the selection gate via the laminated film. In the regions on both sides of the selection gate and the memory gate in the p-type well, n-type impurity diffusion layers serving as the source and drain are formed. The region controlled by the selection gate and the region controlled by the memory gate located in the channel region between said impurity diffusion layers have the different charge densities of the impurity from each other.
摘要:
Performance and reliability of a semiconductor device including a non-volatile memory are improved. A memory cell of the non-volatile memory includes, over an upper portion of a semiconductor substrate, a select gate electrode formed via a first dielectric film and a memory gate electrode formed via a second dielectric film formed of an ONO multilayered film having a charge storing function. The first dielectric film functions as a gate dielectric film, and includes a third dielectric film made of silicon oxide or silicon oxynitride and a metal-element-containing layer made of a metal oxide or a metal silicate formed between the select gate electrode and the third dielectric film. A semiconductor region positioned under the memory gate electrode and the second dielectric film has a charge density of impurities lower than that of a semiconductor region positioned under the select gate electrode and the first dielectric film.
摘要:
In a situation where a memory cell includes an ONO film, which comprises a silicon nitride film for charge storage and oxide films positioned above and below the silicon nitride film; a memory gate above the ONO film; a select gate, which is adjacent to a lateral surface of the memory gate via the ONO film; a gate insulator positioned below the select gate; a source region; and a drain region, an erase operation is performed by injecting holes generated by BTBT into the silicon nitride film while applying a positive potential to the source region, applying a negative potential to the memory gate, applying a positive potential to the select gate, and flowing a current from the drain region to the source region, thus improving the characteristics of a nonvolatile semiconductor memory device.
摘要:
An n well and a p well disposed at a predetermined interval on a main surface of a SOI substrate with a thin BOX layer are formed, and an nMIS formed on the p well has a pair of n-type source/drain regions formed on semiconductor layers stacked on a main surface of the SOI layer at a predetermined distance, a gate insulating film, a gate electrode and sidewalls sandwiched between the pair of n-type source/drain regions. A device isolation is formed between the n well and the p well, and a side edge portion of the device isolation extends toward a gate electrode side more than a side edge portion of the n-type source/drain region (sidewall of the BOX layer).
摘要:
Disclosed is a disk label printer that includes a slot-in type optical disk driving mechanism and a printing mechanism integrated with each other, has a small size, and smoothly transfers optical disks. The disclosed disk label printer includes: a case that has a slot through which an optical disk is inserted or ejected formed therein; an optical disk driving mechanism that is provided in the case and writes and/or reads signals to and/or from the optical disk mounted to a disk mounting portion; and a printing mechanism that is provided in the case and includes a thermal head which prints a desired image on a label surface of the optical disk. The printing mechanism is provided on a transfer path of the optical disk toward the optical disk driving mechanism between the slot and the optical disk driving mechanism. The thermal head and a platen roller come into pressure contact with each other with the optical disk interposed therebetween on the transfer path, only when the optical disk is transferred during the driving of the printing mechanism. The thermal head and the platen roller are withdrawn from the transfer path so as to be separated from each other, when the optical disk is transferred during operations other than the driving of the printing mechanism.
摘要:
An operation scheme for operating stably a semiconductor nonvolatile memory device is provided.When hot-hole injection is conducted in the semiconductor nonvolatile memory device of a split gate structure, the hot-hole injection is verified using a crossing point that does not change with time. Thus, an erased state can be verified without being aware of any time-varying changes.Also, programming or programming/erasure is conducted by repeating pulse voltage or multi-step voltage application to a gate section multiple times.
摘要:
In a split gate type nonvolatile memory cell in which a MOS transistor for a nonvolatile memory using a charge storing film and a MOS transistor for selecting it are adjacently formed, the charge storing characteristic is improved and the resistance of the gate electrode is reduced. In order to prevent the thickness reduction at the corner portion of the charge storing film and improve the charge storing characteristic, a taper is formed on the sidewall of the select gate electrode. Also, in order to stably perform a silicide process for reducing the resistance of the self-aligned gate electrode, the sidewall of the select gate electrode is recessed. Alternatively, a discontinuity is formed between the upper portion of the self-aligned gate electrode and the upper portion of the select gate electrode.
摘要:
After forming a first dielectric film on the main surface of a semiconductor substrate, a first conductive film is formed on the first dielectric film, and then, the surface of the first conductive film is planarized by a CMP method. Subsequently, the first conductive film and the first dielectric film are etched, thereby forming a select gate having a first gate electrode and a first gate dielectric film. Subsequently, after forming a second dielectric film on the sidewall of the first gate electrode and the main surface, a second conductive film is formed on the second dielectric film, and the second conductive film is etched, thereby forming a memory gate having a second gate electrode and a second gate dielectric film.
摘要:
In a situation where a memory cell includes an ONO film, which comprises a silicon nitride film for charge storage and oxide films positioned above and below the silicon nitride film; a memory gate above the ONO film; a select gate, which is adjacent to a lateral surface of the memory gate via the ONO film; a gate insulator positioned below the select gate; a source region; and a drain region, an erase operation is performed by injecting holes generated by BTBT into the silicon nitride film while applying a positive potential to the source region, applying a negative potential to the memory gate, applying a positive potential to the select gate, and flowing a current from the drain region to the source region, thus improving the characteristics of a nonvolatile semiconductor memory device.