摘要:
A novel technique for the real time monitoring of ion implant doses has been invented. This is the first real-time monitor to cover the high dosage range (10E13 to 10E16 ions/sq. cm.). The underlying principle of this new technique is the increase in the resistance of a metal silicide film after ion implantation. Measurement of this increase in a silicide film that has been included in a standard production wafer provides an index for correlation with the implanted ion dose.
摘要:
A semiconductor structure includes a semiconductor substrate of a first conductivity type; a pre-high-voltage well (pre-HVW) in the semiconductor substrate, wherein the pre-HVW is of a second conductivity type opposite the first conductivity type; a high-voltage well (HVW) over the pre-HVW, wherein the HVW is of the second conductivity type; a field ring in the HVW and occupying a top portion of the HVW, wherein the field ring is of the first conductivity type; an insulation region over and in contact with the field ring and a portion of the HVW; a gate electrode partially over the insulation region; a drain region in the HVW, wherein the drain region is of the second conductivity type; and wherein the HVW horizontally extends further toward the drain region than the pre-HVW; and a source region adjacent to, and on an opposite side of the gate electrode than the drain region.
摘要:
A semiconductor structure includes a semiconductor substrate of a first conductivity type; a pre-high-voltage well (pre-HVW) in the semiconductor substrate, wherein the pre-HVW is of a second conductivity type opposite the first conductivity type; a high-voltage well (HVW) over the pre-HVW, wherein the HVW is of the second conductivity type; a field ring in the HVW and occupying a top portion of the HVW, wherein the field ring is of the first conductivity type; an insulation region over and in contact with the field ring and a portion of the HVW; a gate electrode partially over the insulation region; a drain region in the HVW, wherein the drain region is of the second conductivity type; and wherein the HVW horizontally extends further toward the drain region than the pre-HVW; and a source region adjacent to, and on an opposite side of the gate electrode than the drain region.
摘要:
A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
摘要:
A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
摘要:
A semiconductor device includes a substrate having a source, a drain, and a gate between the source and the drain. Both the source and the drain include a first edge, and the gate includes a first portion. A first deep trench structure is situated under the first portion of the gate and proximate to the first edge of the source and the first edge of the drain.
摘要:
A semiconductor device includes a substrate having a source, a drain, and a gate between the source and the drain. Both the source and the drain include a first edge, and the gate includes a first portion. A first deep trench structure is situated under the first portion of the gate and proximate to the first edge of the source and the first edge of the drain.
摘要:
A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
摘要:
A transistor of an integrated circuit is provided. A first doped well region is formed in a well layer at a first active region. At least part of the first doped well region is adjacent to a gate electrode of the transistor. A recess is formed in the first doped well region, and the recess preferably has a depth of at least about 500 angstroms. A first isolation portion is formed on an upper surface of the well layer at least partially over an isolation region. A second isolation portion is formed at least partially in the recess of the first doped well region. At least part of the second isolation portion is lower than the first isolation portion. A drain doped region is formed in the recess of the first doped well region. The second isolation portion is located between the gate electrode and the drain doped region.
摘要:
In one embodiment, the disclosure relates to a method and apparatus for surface recovery of a polymer insulation layer through implantation. The method includes providing a substrate having thereon a conductive pad and an insulation layer, optionally processing the conductive pad to remove oxide layer formed on the conductive pad and conducting ion implantation to recover dielectric properties of the insulation layer.