摘要:
An apparatus having a wavefront measuring device (1, 2, 7), which is designed to determine a wavefront tilt in one or more non-parallel transverse directions perpendicular to an optical axis of the optical imaging system, at a plurality of measurement points which are mutually offset in the direction of the optical axis. An evaluation unit (5) determines a telecentricity error value from the wavefront tilt measurement values obtained by the wavefront measuring device.
摘要:
A measuring device for interferometric measurement of an optical imaging system that is provided for projecting a useful pattern, provided on a mask, into the image plane of the imaging system, includes a wavefront source for generating at least one wavefront traversing the imaging system; a diffraction grating, arrangeable downstream of the imaging system, for interacting with the wavefront reshaped by the imaging system; and a spatially resolving detector, assigned to the diffraction grating, for acquiring interferometric information. The wavefront source has at least one measuring pattern that is formed on the mask in addition to the useful pattern. The useful pattern may represent the structure of a layer of a semiconductor component in a specific fabrication step. The measuring pattern may be formed as a coherence-forming structure periodic in one or two dimensions.
摘要:
A device and a method for the optical measurement of an optical system (1), in particular an optical imaging system. The device includes one or more object-side test optics components (2a, 2b) arranged in front of the optical system to be measured, and/or one or more image-side test optics components (3, 4, 5) arranged behind the optical system to be measured. A container for use in such a device, a microlithography projection exposure machine equipped with such a device, and a method which can be carried out with the aid of this device are also disclosed. An immersion fluid is introduced adjacent to at least one of the one or more object-side test optics components and/or image-side test optics components. Such device and method provide for optical measurement by microlithography projection objectives of high numerical aperture using wavefront detection with shearing or point diffraction interferometry or a Moiré measuring technique.
摘要:
Immersion objective arrangement including an objective, an immersion medium and an optical scattering disk, and associated method. The optical scattering disk includes a transparent substrate (1) and a light scattering layer (2) adjoining a surface of the substrate and having light-scattering-active particles (3). The light scattering layer has an embedding medium (4) which is optically denser than air and directly adjoins the facing surface of the substrate without intervening air gaps and by which the light-scattering-active particles are surrounded. Such optical scattering disks may be used, e.g., in apparatuses for wavefront measurement of high-aperture microlithography projection objectives employing lateral shearing interferometry.
摘要:
An optical imaging device, in particular for microlithography, including an imaging unit adapted to image an object point on an image point and a measurement device. The imaging unit has a first optical element group having at least one first optical element. The imaging device is adapted to participate in the imaging of the object point on the image point, and the measurement unit is adapted to determine at least one image defect occurring on the image point when the object point is imaged. The measuring device includes at least one measurement light source, one second optical element group and at least one detection unit. The measurement light source transmits at least one measurement light bundle. The second optical element group includes at least one optical reference element and one second optical element, the elements adapted to direct the at least one measurement light bundle to the at least one detection unit, to produce at least one detection signal. The second optical element has a defined spatial relationship with the first optical element. The optical reference element has an at least partially reflecting first optical surface and the second optical element has an at least partially reflecting second optical surface. The measurement device is adapted to determine the at least one image defect using the at least one detection signal. The first optical surface and the second optical surface are positioned relative to one another such that a multiple reflection of the at least one measurement light bundle occurs between them.
摘要:
Optical scattering disk, use and wavefront measuring apparatus. The optical scattering disk includes a transparent substrate (1) and a light scattering layer (2) adjoining a surface of the substrate and having light-scattering-active particles (3). The light scattering layer has an embedding medium (4) which is optically denser than air and directly adjoins the facing surface of the substrate without intervening air gaps and by which the light-scattering-active particles are surrounded. Such optical scattering disks may be used, e.g., in apparatuses for wavefront measurement of high-aperture microlithography projection objectives employing lateral shearing interferometry.
摘要:
A device for the optical measurement of an optical system, in particular an optical imaging system, is provided. The device includes at least one test optics component arranged on an object side or an image side of the optical system. An immersion fluid is adjacent to at least one of the test optics components. A container for use in this device, a microlithography projection exposure machine equipped with this device, and a method which can be carried out with the aid of this device are also provided. The device and method provide for optical measurement of microlithography projection objectives with high numerical apertures by using wavefront detection with shearing or point diffraction interferometry, or a Moiré measuring technique.
摘要:
A device for the optical measurement of an optical system, in particular an optical imaging system, is provided. The device includes at least one test optics component arranged on an object side or an image side of the optical system. An immersion fluid is adjacent to at least one of the test optics components. A container for use in this device, a microlithography projection exposure machine equipped with this device, and a method which can be carried out with the aid of this device are also provided. The device and method provide for optical measurement of microlithography projection objectives with high numerical apertures by using wavefront detection with shearing or point diffraction interferometry, or a Moiré measuring technique.
摘要:
A method of optimizing an imaging performance of a projection exposure system is provided, wherein the projection exposure system includes an illumination optical system for illuminating a patterning structure and a projection optical system for imaging a region of the illuminated patterning structure onto a corresponding field. The method involves setting the field to a first exposure field, setting optical parameters of the projection exposure system to a first setting such that the imaging performance within the first exposure field is a first optimum performance, changing the field to a second exposure field, and changing the optical parameters to a second setting such that the imaging performance within the second exposure field is a second optimum performance.
摘要:
Method and apparatus for setting optical imaging properties using radiation treatment, specifically a method and an apparatus for setting the imaging properties of an optical system with radiation treatment of at least one optical element of the optical system in the installed state, and a method for setting the imaging properties of an internal optical element with radiation treatment. A measurement is carried out on the optical system in order to determine one or more aberrations in a spatially resolved fashion, a correction that changes the shape and/or refractive index of the internal optical element is calculated in order to reduce the measured aberration or aberrations, and the optical element is irradiated with the aid of a processing radiation that changes the shape and/or refractive index, in accordance with the calculated correction. In addition, a radiation treatment of an optical element for setting its imaging properties uses a compacting processing radiation with the aid of which the optical element is irradiated in a controlled fashion in such a way that its imaging properties are influenced in a controlled fashion via spatially resolved material shrinkage and/or increase of the refractive index. The method and apparatus are suited, for example, for producing correction aspherics in microlithography projection objectives in the installed state.