Abstract:
A semiconductor device comprises a substrate. In addition, the semiconductor device comprises an active region and an isolation region. The active region is in the substrate and comprises a semiconductor material. The isolation region is also in the substrate, adjacent the active region and comprises an insulating material. The active region and isolation region form a surface having a step therein. The semiconductor further comprises a dielectric material formed over the step. The dielectric material has a dielectric constant greater than about 8.
Abstract:
Provided is a semiconductor device and a method for its fabrication. The device includes a semiconductor substrate, a first silicide in a first region of the substrate, and a second silicide in a second region of the substrate. The first silicide may differ from the second silicide. The first silicide and the second silicide may be an alloy silicide.
Abstract:
An oscillation and rotation metric controller comprised of a scrolling wheel mechanism to oscillate for driving magnetic poles of a permanent magnet to displace thus to generate signals of changed magnetic field, signals being retrieved to achieve lateral oscillation metric control; and a knob switch encoder being fixed to the scrolling wheel mechanism to execute metric control by rotation displacement.
Abstract:
An integrated circuit includes a substrate, a first transistor, and a second transistor. The first transistor has a first gate dielectric portion located between a first gate electrode and the substrate. The first gate dielectric portion includes a first high-permittivity dielectric material and/or a second high-permittivity dielectric material. The first gate dielectric portion has a first equivalent silicon oxide thickness. The second transistor has a second gate dielectric portion located between a second gate electrode and the substrate. The second gate dielectric portion includes the first high-permittivity dielectric material and/or the second high-permittivity dielectric material. The second gate dielectric portion has a second equivalent silicon oxide thickness. The second equivalent silicon oxide thickness may be different than the first equivalent silicon oxide thickness.
Abstract:
A method and system is disclosed for forming an improved isolation structure for strained channel transistors. In one example, an isolation structure is formed comprising a trench filled with a nitrogen-containing liner and a gap filler. The nitrogen-containing liner enables the isolation structure to reduce compressive strain contribution to the channel region.
Abstract:
A method of forming an epitaxial layer of uniform thickness is provided to improve surface flatness. A substrate is first provided and a Si base layer is then formed on the substrate by epitaxy. A Si—Ge layer containing 5 to 10% germanium is formed on the Si base layer by epitaxy to normalize the overall thickness of the Si base layer and the Si—Ge layer containing 5 to 10% germanium.
Abstract:
A display system embedded in a media player has an on-screen display (OSD) function for displaying an operation status of the player. When the player obtains a medium signal and outputs a video signal within the medium signal to a screen for displaying video, the invention utilizes software-parsing to parse a subtitle signal within the medium signal, and obtains a text signal within the subtitle signal. Then the subtitle text can be displayed as OSD text using the OSD function of the player.
Abstract:
A microelectronic device including a first substrate bonded to a second substrate. The first and second substrate may have different crystallographic orientations. The first substrate includes an opening through which an epitaxially grown portion of the second substrate extends. A first semiconductor device is coupled to the first substrate. A second semiconductor device is coupled to the epitaxially grown portion of the second substrate.
Abstract:
A high performance semiconductor device and the method for making same is disclosed with an improved drive current. The semiconductor device has source and drain regions built on an active region, a length of the device being different than a width thereof. One or more isolation regions are fabricated surrounding the active region, the isolation regions are then filled with an predetermined isolation material whose volume shrinkage exceeds 0.5% after an anneal process. A gate electrode is formed over the active region, and one or more dielectric spacers are made next to the gate electrode. Then, a contact etch stopper layer is put over the device, wherein the isolation regions, spacers and contact etch layer contribute to modulating a net strain imposed on the active region so as to improve the drive current.
Abstract:
A strained-channel transistor structure with lattice-mismatched zone and fabrication method thereof. The transistor structure includes a substrate having a strained channel region, comprising a first semiconductor material with a first natural lattice constant, in a surface, a gate dielectric layer overlying the strained channel region, a gate electrode overlying the gate dielectric layer, and a source region and drain region oppositely adjacent to the strained channel region, with one or both of the source region and drain region comprising a lattice-mismatched zone comprising a second semiconductor material with a second natural lattice constant different from the first natural lattice constant.