摘要:
Composite organic-inorganic nanoparticles (COIN) and clusters of such nanoparticles are provided that produce surface-enhanced Raman signals when excited by a laser. The nanoparticles include metallic colloids and a Raman-active organic compound. The metal required for achieving a suitable SERS signal is inherent in the nanoparticle, and a wide variety of Raman-active organic compounds can be incorporated into the particle. Methods for producing the nanoparticles and clusters of nanoparticles are also provided. In addition, polymeric microspheres containing the nanoparticles and clusters of nanoparticles and methods of making them are also provided. Methods for using the nanoparticles, clusters, and microspheres in assays for multiplex detection of biological molecules do not require signal amplification techniques.
摘要:
Composite organic-inorganic nanoparticles (COIN) are provided that produce surface-enhanced Raman signals when excited by a laser. The nanoparticles include metallic colloids and a Raman-active organic compound. The metal required for achieving a suitable SERS signal is inherent in the nanoparticle, and a wide variety of Raman-active organic compounds can be incorporated into the particle. Indeed, a large number of unique Raman signatures can be created by employing nanoparticles containing Raman-active organic compounds of different structures, mixtures, and ratios. Thus, nanoparticles and methods described herein are useful for the simultaneous detection of many analytes in a mixture, resulting in rapid qualitative analysis of a mixture. In addition, since many Raman-active organic compounds can be incorporated into a single nanoparticle, the SERS signal from a single COIN particle is strong relative to SERS signals obtained from Raman-active materials that do not contain the nanoparticles described herein.
摘要:
The methods and apparatus disclosed herein are of use for sequencing and/or identifying nucleic acids. Nucleic acids containing labeled nucleotides may be synthesized and passed through nanopores. Detectors operably coupled to the nanopores may detect the labeled nucleotides. By determining the time intervals at which labeled nucleotides are detected, distance maps for each type of labeled nucleotide may be compiled. The distance maps in turn may be used to sequence and/or identify the nucleic acid. In different embodiments of the invention, luminescent nucleotides or nanoparticles may be detected using photodetectors or electrical detectors. Apparatus and sub-devices of use for nucleic acid sequencing and/or identification are also disclosed herein.
摘要:
A three-dimensional printer uses inkjet-type printheads to rapidly prototype, or print, a three-dimensional model. A powder feeder includes a conveyor system and a metering system to deliver powder to a build area in measured quantities. The powder feeder also includes a vacuum system for loading powder into a feed reservoir or chamber. The vacuum system can also be used to cleanup excess powder. Other powder control features include powder gutters and magnetic powder plows. During printing, a cleaning system operates to remove powder from the printheads. In the event of a printhead or jet failure, the failure can be detected and corrective measures taken automatically. After printing, the model can be depowdered and infiltrated in an enclosure.
摘要:
A three-dimensional printer uses inkjet-type printheads to rapidly prototype, or print, a three-dimensional model. A powder feeder includes a conveyor system and a metering system to deliver powder to a build area in measured quantities. The powder feeder also includes a vacuum system for loading powder into a feed reservoir or chamber. The vacuum system can also be used to cleanup excess powder. Other powder control features include powder gutters and magnetic powder plows. During printing, a cleaning system operates to remove powder from the printheads. In the event of a printhead or jet failure, the failure can be detected and corrective measures taken automatically. After printing, the model can be depowdered and infiltrated in an enclosure.
摘要:
The invention relates to apparatus and methods for producing three-dimensional objects and auxiliary systems used in conjunction with the aforementioned apparatus and methods. The apparatus and methods involve continuously printing radially about a circular and/or rotating build table using multiple printheads. The apparatus and methods also include optionally using multiple build tables. The auxiliary systems relate to build material supply, printhead cleaning, diagnostics, and monitoring operation of the apparatus.
摘要:
A three-dimensional printer uses inkjet-type printheads to rapidly prototype, or print, a three-dimensional model. A powder feeder includes a conveyor system and a metering system to deliver powder to a build area in measured quantities. The powder feeder also includes a vacuum system for loading powder into a feed reservoir or chamber. The vacuum system can also be used to cleanup excess powder. Other powder control features include powder gutters and magnetic powder plows. During printing, a cleaning system operates to remove powder from the printheads. In the event of a printhead or jet failure, the failure can be detected and corrective measures taken automatically. After printing, the model can be depowdered and infiltrated in an enclosure.
摘要:
The invention relates to methods and apparatus for fabricating a three-dimensional object from a representation of the object stored in memory. The apparatus includes a stationary build table for receiving successive layers of a build material and at least one movable printhead disposed above the build table. The printhead deposits a binding material in a predetermined pattern on each successive layer of the build material to form the three-dimensional object.
摘要:
A nano-electrode or nano-wire may be etched centrally to form a gap between nano-electrode portions. The portions may ultimately constitute a single electron transistor. The source and drain formed from the electrode portions are self-aligned with one another. Using spacer technology, the gap between the electrodes may be made very small.
摘要:
A micro-fluidic device containing a micro-fluidic inlet channel to convey a process flow, a plurality of micro-fluidic focusing channels to each convey one of a plurality of focusing flows, a focusing manifold coupled with the inlet channel at an inlet port thereof and with the plurality of focusing channels at a plurality of focusing channel ports thereof to focus the process flow by contacting and hydrodynamically impacting at least three sides of the process flow with the focusing flows, and a micro-fluidic outlet channel coupled with the focusing manifold at an outlet channel port to convey the combined focused process flow and focusing flow from the focusing manifold.