Abstract:
The present invention is a novel and improved method and apparatus for performing position location in wireless communications system. One embodiment of the invention comprises a method for performing position location on a subscriber unit in a terrestrial wireless telephone system using a set of satellites each transmitting a signal, the terrestrial wireless telephone system having base stations, including the steps of transmitting an aiding message from the base station to the subscriber unit, said aiding message containing information regarding a data boundary for each signal from the set of satellites, applying correlation codes to each signal yielding corresponding correlation data and accumulating said correlation data over an first interval preceding a corresponding data boundary yielding a first accumulation result, and a second interval following said corresponding data boundary yielding a second accumulation result.
Abstract:
A channel structure for use in communication systems. Two sets of physical channels, one for the forward link and another for the reverse link, are utilized to facilitate communication of a variety of logical channels. The physical channels comprise data and control channels. In the exemplary embodiment, the data channels comprise fundamental channels which are used to transmit voice traffic, data traffic, high speed data, and other overhead information and supplemental channels which are used to transmit high speed data. The fundamental channels can be released when the remote stations are idle to more fully utilized the available capacity. The control channels are used to transmit paging and control messages and scheduling information.
Abstract:
Techniques to reduce intermodulation distortion at the output of an active circuit having even-order and odd-order nonlinearities. The IM3 products generated by the even-order nonlinearity of the active circuit are canceled against the IM3 products generated by the odd-order nonlinearity. The amplitude and phase of the IM3 products can be manipulated by adjusting either the source or load impedance, or both, of the active circuit. The amplitude and phase of the IM2 products generated by the even-order nonlinearity can be manipulated by adjusting the impedance of the active circuit at sub-harmonic and second harmonic frequencies (i.e., the frequencies of the IM2 products). The amplitude and phase of the IM3 products generated by the odd-order nonlinearity can be manipulated by adjusting the impedance of the active circuit at the fundamental frequency. By properly tuning or "matching" the impedance of either the source or load, or both, of the active circuit at either the sub-harmonic or second harmonic frequency, or both, the amplitude and phase of the IM2 products can be adjusted such that the IM3 products resulting from the even-order nonlinearity approximately cancel the IM3 product(s) resulting from the odd-order nonlinearity.
Abstract:
An efficient retransmission of data using symbol accumulation wherein the packet received in error is retransmitted at a lower energy-per-bit level concurrently in the same frame with the new packet. The destination device receives the data transmission and retransmission, demodulate the signal, and separates the received data into the new and retransmitted packet. The destination device then accumulates the energy of the retransmitted packet with the energy already accumulated for the packet received in error and decodes the accumulated packet. The accumulation of the additional energy provided by the subsequent retransmissions improves the probability of a correct decoding. The throughput rate can be improved since the packet received in error is retransmitted concurrently with the transmission of the new data packet. The capacity is maximized since the retransmission of the packet received in error is at a lower energy level than that of the new packet.
Abstract:
A method and system for detecting fax calls in a network that alternatively operates in either a voice mode or a fax mode. A detection threshold is first initialized, a first detector detects whether a calling tone has been transmitted from a calling fax machine to a called fax machine, and a second detector detects whether an identification tone has been sent from the called fax machine to the calling fax machine. If the calling tone has been transmitted from the calling fax machine to the called fax machine the detection threshold is decremented a first amount, if the identification tone has been transmitted from the called fax machine to the calling fax machine the detection threshold is decremented a second amount, and if both the calling tone and the identification tone have been sent the detection threshold is decremented a third amount. A flag measure is generated by monitoring, with a third detector, signals sent from the called fax machine. The flag measure is representative of the number of information flags detected by the third detector. The flag measure is compared to the detection threshold and, if the flag measure exceeds the detection threshold, a fax call is detected. The detection of the fax call may then be used to switch a network from voice mode to fax mode. The vocoder used in the voice mode is temporarily muted when the detection threshold is first exceeded in order to confirm the existence of the fax call before switching from voice mode to fax mode.
Abstract:
A novel and improved method and apparatus for generating a reduced peak amplitude high data rate channel comprised of a set of lower rate channels is described. The set of lower rate channels are phase rotated before being summed and transmitted. The amount of phase rotation is dependent on the number of channels used to form the higher rate channel. In an embodiment where two lower rate channels are used, the in-phase and quadrature-phase components of the two channels are complex multiplied before upconversion with an in-phase and quadrature-phase sinusoids. For a high rate channel comprised of more than two lower rate channels, the in-phase and quadrature-phase component of each channel is upconverted with a set of sinusoids that are phase offset from one another.
Abstract:
A method and apparatus for performing an inter-system soft handoff is described. In accordance with the present invention, when a subscriber unit crosses from a first cellular system to a second cellular system, a base station controller determines if sufficient network resources are available to conduct a inter-system soft handoff. If so, the base station controller generates a set of signaling messages that cause call processing resource to be allocated and for the call to be processed at the second cellular system. The base station controller then perform data-selection and data-broadcast for the call by transmitting data to the subscriber unit by way of the second cellular system as well as via one or more base stations to which the base station controller is directly coupled. The determination as to whether sufficient network resources are available to conduct the inter-system soft handoff is based on the type of connection that exists between the first cellular system and the second cellular system, the number of inter-system calls being conducted, and the frame offset of the call currently being processed.
Abstract:
A method performed by a wireless device includes receiving a first signal that contains one or more modulated symbols and determining a signal strength of the first signal. The method also includes adjusting a remembrance factor based on the signal strength of the first signal and demodulating the one or more modulated symbols based on the first signal and based on a number of previously demodulated symbols. The number of previously demodulated symbols utilized in the demodulation is based on the remembrance factor.
Abstract:
A power control device can generate control signals to control operation of power sources. Additional control signals control operation of load switches that can be connected to the power sources to provide secondary sources of power. The load switches can be turned in a gradual manner at rates that depend on the power sources to which they are connected. The outputs of the load switches can be monitored for overvoltage and undervoltage conditions relative to the power sources to which they are connected.
Abstract:
A method in a mobile communication device includes: measuring a first temperature associated with a crystal configured to provide a reference signal having a frequency; measuring a second temperature associated with a component that is coupled to the crystal by an electrically and thermally conductive line; and compensating, based upon the measuring of the first and second temperatures, for a change in the frequency of the reference signal of the crystal.