Abstract:
An electric motor includes a magnet rotor which is placed with an air gap interposed between it and a stator and has a magnetic pole portion formed from a plastic magnet which swells by hydrogen bonds, an inverter circuit, a DC-voltage conversion portion, a driving logic control portion, a supply current value control portion, a current value designation portion, a reference current value designation portion, and a correlation designation portion, wherein the correlation designation portion determines an average current value by changing the average current value linearly or non-linearly with respect to a reference current value, and the magnetic pole portion absorbs moisture to swell, thereby making the air gap smaller, at higher humidity than a reference humidity.
Abstract:
A motor control multilayer printed wiring board includes: a multilayer printed wiring board having a plurality of laminated conductor layers; an upper-row FET connected to the conductor layers and configured to control a motor; a lower-row FET connected to the conductor layers and arranged at a location at which the lower-row FET overlaps with the upper-row FET in a laminated direction in which the conductor layers are laminated, the lower-row FET being configured to control the motor; and a heat dissipation mechanism arranged on the multilayer printed wiring board and arranged at a location at which the heat dissipation mechanism overlaps with at least one of the upper-row FET and the lower-row FET in the laminated direction.
Abstract:
An apparatus, comprises three driver FETs coupled at their sources; note-driver circuit; a first sense FET coupled to the sources of the three driver FETs; a current mirror having the first sense FET and a mirror FET; wherein the first sense FET is coupled to the mirror FET; a first transconductance amplifier coupled to the first sense FET; a second amplifier coupled to the current mirror, and an output of the first transconductance amplifier is an input to the second amplifier.
Abstract:
A method and apparatus for controlling a change in a quadrant of operation of a brushless direct current motor. A quadrant change in an operation of a motor is identified. In response to identifying the quadrant change, selected ones of a plurality of switches in a switch bridge are selected to be controlled to couple a direct current power source to the windings of the motor to change a direction of an actual current in the windings.
Abstract:
A method of controlling a brushless permanent-magnet motor. The method includes commutating a winding of the motor at times that are retarded relative to zero-crossings of back EMF in the winding.
Abstract:
A method for controlling a brushless DC motor (BLDC motor) having a rotor, a stator and an angle sensor and a logic circuit for generating the phase voltages of the windings depending on the phase angle of the rotor. The logic circuit access a lookup table, in which to implement commutation with block-shaped, trapezoidal, sinusoidal, sinoid-based signal waveforms. The drive values are stored for the electrical phase angle of the rotor for generating phase voltages (VU, VV, VW) for the windings. A control unit generates configuration data for the logic circuit determine the commutation form, and depending on the form, the drive values are supplied to a PWM generator for generating control signals (VU, VV, VW) depending on the electrical phase angle of the rotor angle, which PWM control signals can be used to control the phase currents in the windings.
Abstract:
A method is described for controlling a multiphase machine which is connected to a battery, the multiphase machine having a DC link which is provided with a DC link capacitor, phase windings, and a high side switch and a low side switch for each phase. The switches associated with the individual phases are controlled by a control unit in such a way that sinusoidal phase currents are predefined, at least one phase current is connected at any point in time in each control cycle, and a fixed, pulsed control pattern is present for each control cycle. The control widths of the actuating signals associated with the phases are constant in the pulsed control pattern. The control pulses associated with the individual phases are predefined in such a way that the DC link current which arises is minimized.
Abstract:
An embodiment of a motor controller includes a motor driver and a signal conditioner. The motor driver is operable to generate a motor-coil drive signal having a first component at a first frequency, and the signal conditioner is coupled to the motor driver and is operable to alter the first component. For example, if the first component of the motor-coil drive signal causes the motor to audibly vibrate (e.g., “whine”), then the signal conditioner may alter the amplitude or phase of the first component to reduce the vibration noise to below a threshold level.
Abstract:
A method and a control device operate a three-phase brushless direct current motor with phase windings that are fed by an inverter connected to a voltage source having a high potential and a low potential. The semiconductor switches of the inverter are arranged in a bridge circuit and are controlled such that current always flows through two phase windings during motor operation. The motor is operated with normal commutation when the rotational speed is greater than or equal to a minimum rotational speed, wherein the angles are shifted by 60°. During start-up operation, up to the minimum rotational speed, a high-potential-side commutation angle of a phase winding is shifted toward a low-potential-side commutation angle of the phase winding by an angle greater than 0° and less than or equal to 60° with respect to the normal commutation.
Abstract:
A method of power tuning an electric system, the electric system including an electric machine and a control system for driving the electric machine in response to control values stored in a power map. The method includes loading the control system with a first power map, driving the electric machine with the control system, measuring a power of the electric system, and loading the control system with a second power map in the event that the measured power lies outside a predetermined range.