Abstract:
A method for use in measuring a property of an environment or an object in, or adjacent to, an elongated space (10), comprises unspooling and/or spooling a line (6) attached to a tool (4) so as to move the tool along an elongated space. The method may comprise using the tool to measure a property of an environment or an object in, or adjacent to, an elongated space during movement of the tool along the elongated space. The method may comprise, determining an acceleration of the line, measuring an acceleration of the tool along the elongated space, and controlling damping of the movement of the tool along the elongated space according to the measured acceleration of the tool and the determined acceleration of the line. The elongated space may be located downhole or may be defined in, or adjacent to, an oil or gas well.
Abstract:
An on-the-go monitor and control means and method for an agriculture machines includes on-the-go soil sensors that can be used to control tillage and seeding depth. On seeder implements, the sensors provide information that affects uniform plant emergence.
Abstract:
A method of determining a depth of a hole formed in a work piece is disclosed. The method includes determining the hole depth based upon a load signal indicative of a load on a tool forming the hole during the forming of the hole. The hole depth determined is then adjusted with an offset and component specifications are combined with the hole length to determine a component specification for use in the hole to fix components together. At least a part of the depth determination and component specification can be carried out automatically in a computer, for an array of holes.
Abstract:
A system is provided for measuring a thickness of a rubber layer of a tire. The layer includes a joined face, which is joined to an adjacent metallic reinforcement, and a free face in contact with air. The system includes a casing with an application face for contacting the free face, and a sensor positioned in the casing and structured to measure a distance d between the joined face and the free face. The sensor includes a source coil element, which is a source of an alternating magnetic field, and a sensitive coil element, which is an element sensitive to a variation in a magnetic flux density in a vicinity of the source coil element. A frequency and an excitation power of the source coil element are such that the magnetic flux density between the adjacent metallic reinforcement and the source coil element increases as the distance d decreases.
Abstract:
A system for measuring a thickness of a layer of rubber material of a tyre includes a sensor. The layer includes a joined face, which is joined to an adjacent metal reinforcement, and a free face, which is in contact with air. The sensor, which measures a distance d between the joined face and the free face, includes a source of a static magnetic field and a sensitive element whose output signal is a function of a level of a local magnetic field. The sensor is positioned in such a way that a magnetic field strength measured by the sensitive element varies when the distance d decreases.
Abstract:
A step drill test structure for a PCB and method for using the same is disclosed. In one embodiment, a test structure includes a drill path and a connection via. The drill path may include sensing pads on selected ones of a plurality of layers of the PCB (e.g., the non-surface layers). The sensing pads of a given drill path may be electrically conductive, while the remaining portion of the drill path is non-conductive. The sensing pads of each drill path may be electrically coupled to the connection via. The depth of a given layer at a particular drill path may be determined by drilling, using an electrically conductive drill bit, into the drill path and determining when an electrical connection is made between the drill bit and the connection via.
Abstract:
The present inventions relate generally to methods, apparatus and systems for measuring snow stability and structure which may be used to assess avalanche risk. The disclosed apparatus includes a sensing unit configured to sense a resistance to penetration as the sensing unit is being driven into a layer of snow. The disclosed apparatus may also be configured to take other environmental measurements, including temperature, humidity, grain size, slope aspect and inclination. Methods and apparatus are also disclosed for generating a profile of snow layer hardness according to depth based on the sensed resistance to penetration and identifying areas of concern which may indicate an avalanche risk. Systems and apparatus are also disclosed for sharing the generated profiles among a plurality of users via a central server, and for evaluating an avalanche risk at a geographic location.
Abstract:
The present invention relates to a method of automated process control operation wherein a physical object is directed into a read zone, information stored on an ID Container attached to the physical object is retrieved, physimetric property of the physical object is captured, the retrieved information is processed to provide recorded physimetric property specific to the physical object, the recorded physimetric property and captured physimetric property are passed to an analysis algorithm for comparison, and the results of the comparison are delivered to a controlling device. The results of the comparison will determine whether the physical property will continue to pass through the read zone or require to be rotated by the operator.
Abstract:
A method, apparatus, and computer usable program product for calibrating rivet height gages. In one embodiment, the process calculates a size of sphere required to create a sphere-based ring gage to simulate a contact point between a rivet height gage and a sharp edge of a specified sharp-edged ring gage. The process identifies an expected protrusion height from a top of the rivet height gage to a reference surface formed by tops of a set of spheres of the size of sphere required to simulate the contact point.
Abstract:
The invention relates to a method for locating objects enclosed in a medium, according to which a detection signal is generated by at least one capacitive sensor device. Said detection signal penetrates the medium that is to be analyzed in such a way that information is obtained about the objects that are enclosed in the medium by evaluating the detection signal, particularly by measuring impedance. According to the invention, in order to evaluate the detection signal, an algorithm is used that separates the measured signal into signal parts originating from the enclosing medium and signal parts originating from the object enclosed in the medium. The invention also relates to a measuring device for carrying out the inventive method.