Abstract:
A transmit-receive system includes a phase-locked loop and a translation frequency loop. To bring about frequency hops, the frequencies in the two loops are varied with large increments in opposite directions. It is shown that the noise caused by the frequency division in the loops is thereby reduced.
Abstract:
A circuit for reducing phase noise in a transmitted radio signal includes a first phase-locked loop circuit including a first controlled oscillator generating a first output signal at a first desired frequency, and a first phase comparator developing a first phase error signal to control the first controlled oscillator, the first error signal representative of phase differences between the first output signal and the first desired frequency. A second phase-locked loop circuit includes a second controlled oscillator generating a second output signal at a desired frequency of transmission related to the first desired frequency, and a second phase comparator developing a second phase error signal representative of phase differences between the first output signal and the desired frequency of transmission. A summer combines the first and second error signals to control the second controlled oscillator to thereby reduce, or cancel, phase noise generated by the first controlled oscillator in the second output signal transmitted as a radio signal at the desired frequency of transmission.
Abstract:
A modulation synthesizer circuit produces a fixed intermediate frequency unmodulated signal without harmonics aliasing back into the transmit spectrum, thus, eliminating the need for a bandpass filter. The modulation synthesizer circuit includes a phase shifter placed before the down conversion mixer. The phase shifter may be placed outside the modulation synthesizer loop such that the phase shifter produces quadrature carrier wave signals to the down conversion mixer. In the alternative the phase shifter may be kept within the modulation synthesizer loop and produce quadrature modulated transmit signals to the down conversion mixer. Any harmonic frequencies generated by the phase shifter are harmonics of the carrier wave signal or modulated transmit signal. Thus, with the appropriate choice of carrier wave signal or modulated transmit signal, any harmonics generated by the phase shifter can be prevented from aliasing back into the transmit spectrum and therefore need not be filtered. Consequently, the bandpass filter typically found after the quadrature modulator can be eliminated.
Abstract:
A transmitter and a phase locked loop (30) for a transmitter are disclosed. The phase locked loop (30) upconverts the frequency of a baseband signal to a frequency for radio transmission. As well as the usual components, the phase locked loop (30) comprises a modulator (39) for modulating a baseband signal (f.sub.bb) onto a carrier (f.sub.ref /R) and forwarding the resultant modulated signal (f.sub.c) to one of the inputs of the phase detector (33). It also comprises a low pass filter (38) in its forward path between the phase detector (33) and the voltage controlled oscillator (34) for passing signals having baseband signal frequencies. A mixer (35) and main frequency divider (36) are provided in the feedback path to downconvert the transmit signal (f.sub.tx). This low division eliminates large amounts of multiplicative noise within the loop bandwidth, and therefore enables a large loop bandwidth to be used. Consequently, the settling time of the phase locked loop is improved.
Abstract:
The invention relates to a circuit for frequency synthesis, comprising: a digital controlled oscillator, comprising (a) a clock generator; an accumulator circuit to which the signal from the clock generator is fed; and a control digit feed circuit for feeding to the digital oscillator a signal representing a control digit; and (b) a phase-locked loop which is connected to the carry output terminal of the accumulator circuit and which is provided with a phase detector, a low-pass filter and a controlled oscillator, wherein the carry output terminal is connected to the phase detector. The digital controlled oscillator is preferable adapted to generate a signal representing a remainder, wherein a correction circuit is arranged for deriving a correction signal from the remainder. The correction circuit is connected to a combination circuit connected to one of the inputs of the phase detector or to a combination circuit incorporated in the phase-locked loop. The circuits can also be connected in cascade.
Abstract:
A system and method for implementing a cellular radio transmitter device comprises a first oscillator device for generating a first oscillator output signal, a second oscillator device for generating a second oscillator output signal, a power amplifier for amplifying the second oscillator output signal to obtain a transmit signal, a mixer device for combining the first oscillator output signal and the transmit signal to produce a mixer output signal, a phase comparator for comparing the mixer output signal and a transmitter input signal and responsively generating a control signal to control the transmit oscillator, and a feedback path for adding the mixer output signal to the transmitter input signal to compensate for distortion present in the transmit signal.
Abstract:
A frequency synthesizing circuit has an input on which a bit flow is received, and an output on which a data-modulated output signal is supplied. The circuit moreover comprises a crystal oscillator supplying a reference clock signal, a phase-locked loop (PLL) having a VCO and a phase detector. The phase detector compares the data-modulated output signal with the reference clock signal and, in response to this, supplies an error signal by means of which the VCO output frequency is controlled. A compensation circuit, which receives a measure of the bit flow received, compensates the data-modulated output signal in the phase-locked loop in response to this before it is supplied to the phase detector.
Abstract:
A clock circuit includes an oscillator for generating a reference frequency signal, and a spread spectrum clock generator cooperating with the oscillator for generating a spread spectrum clock output signal having a fundamental frequency and reduced amplitude EMI spectral components at harmonics of the fundamental frequency. The spread spectrum clock generator preferably includes a clock pulse generator for generating a series of clock pulses, and a spread spectrum modulator for frequency modulating the clock pulse generator to broaden and flatten amplitudes of EMI spectral components which would otherwise be produced by the clock pulse generator. The spread spectrum modulator frequency modulates the clock pulses with specific profiles of frequency deviation versus the period of the profile. Electronic devices including the spread spectrum clock circuit and associated method are also disclosed.
Abstract:
A clock circuit includes an oscillator for generating a reference frequency signal, and a spread spectrum clock generator cooperating with the oscillator for generating a spread spectrum clock output signal having a fundamental frequency and reduced amplitude EMI spectral components at harmonics of the fundamental frequency. The spread spectrum clock generator preferably includes a clock pulse generator for generating a series of clock pulses, and a spread spectrum modulator for frequency modulating the clock pulse generator to broaden and flatten amplitudes of EMI spectral components which would otherwise be produced by the clock pulse generator. The spread spectrum modulator frequency modulates the clock pulses with specific profiles of frequency deviation versus the period of the profile. Electronic devices including the spread spectrum clock circuit and associated method are also disclosed.
Abstract:
A frequency synthesizer includes a controlled oscillator which is responsive to a frequency control input signal, to generate an output frequency. A programmable frequency divider is responsive to the output frequency and to a divider control input, to divide the output frequency by a first integral ratio or by a second integral ratio in response to the divider control input, to thereby produce a divided signal. A phase comparator is responsive to a reference frequency signal and to the divided signal, to compare the reference frequency signal and the divided signal, and thereby produce a first error signal. A sigma-delta modulator is responsive to a modulation input to produce the divider control input. A loop filter is responsive to the first error signal, to thereby produce the frequency control input signal. Ripple compensation signals and direct modulation signals may also be provided, to provide a three-point modulator for a frequency synthesizer. Analog and digital embodiments may also be provided.