摘要:
The presently described technology relates to the modulation of specific immune responses to create a protective immunity in the treatment of autoimmune diseases and diseases requiring the transplantation of tissue. In particular, the present technology relates to the supression of immune responses in a targeted fashion, by increasing the functional concentration of the CEACAM1 protein in a target tissue to create a localized protective immunity for the treatment of autoimmune diseases and diseases requiring the transplantation of tissue.
摘要:
The present invention describes transgenic animals with human(ized) immunoglobulin loci and transgenes encoding human(ized) Igα and/or Igβ sequences. Of particular interest are animals with transgenic heavy and light chain immunoglobulin loci capable of producing a diversified human(ized) antibody repertoire that have their endogenous production of Ig and/or endogenous Igα and/or Igβ sequences suppressed. Simultaneous expression of human(ized) immunoglobulin and human(ized) Igα and/or Igβ results in normal B-cell development, affinity maturation and efficient expression of human(ized) antibodies.
摘要:
The invention concerns a non-human animal model useful for modeling complex human diseases; compositions comprising cell populations from the animal model having different genotypes for the same gene; methods for producing the animal model; and methods for studying a phenotype using an animal model or compositions of the invention.
摘要:
Compositions and methods are disclosed herein for producing one or more immunoglobulins in an isolated B lymphocyte cell line. An isolated cell line includes an isolated B lymphocyte cell line capable of expressing at least one exogenously incorporated membrane immunoglobulin reactive to a first antigen and at least one endogenous secreted immunoglobulin reactive to a second antigen.
摘要:
The invention features compounds of Formula (I), Formula (I)-A and Formula (I)-B as disclosed herein, as well as methods of synthesis, therapy, diagnostics, and assays.
摘要:
Compositions and methods are disclosed herein for producing one or more immunoglobulins in an isolated cytotoxic B lymphocyte cell line. An isolated cell line includes an isolated B lymphocyte cell line capable of expressing at least one exogenously incorporated membrane immunoglobulin reactive to a first antigen and at least one endogenous secreted immunoglobulin reactive to a second antigen, and further capable of expressing at least one exogenously incorporated recombinant B cell receptor that signals for expression of cytotoxic effector molecules.
摘要:
The object of the present invention is to provide a cell that can exhibit physiological activity based on galectin-9, a method for producing the cell, and use of the cell. In order to achieve the above object, the cell of the present invention contains galectin-9, and the galectin-9 is expressed on a cell surface.
摘要:
[Problem] To provide a method that efficiently produces antigen-specific monoclonal antibodies from a wide range of animal species, and to provide a new antigen-specific monoclonal antibody using this technique. [Solution] A nonhuman animal is immunized with a target antigen, lymph fluid or the like is collected from the immunized nonhuman animal, or lymph fluid or the like is collected from a human having antibodies to the target antigen, the collected lymph fluid or the like is combined with (1) a labeled target antigen and (2) a marker that can selectively binds to plasma cells and/or plasmablasts, and cells that have bound to (1) the labeled target antigen and (2) the marker are then selected. The plasma cells and or the plasmablasts that have specifically bound to the target antigen by the method are selected, an gene of an antibody for the target antigen is collected from the selected cells, the base sequence thereof is identified, an antibody or antibody fragment is prepared on the basis of the base sequence of the identified gene, and an antibody or antibody fragment specific to the target antigen is produced.
摘要:
Methods and composition for potentiating germinal centers are disclosed herein. The methods include potentiating germinal centers to enhance antibody production in response to a vaccine, to increase antibody titer in response to a vaccine, and to enhance B cell class switching.