Abstract:
There are provided scalable video encoders and decoders and corresponding methods for scalable video encoding and decoding. A scalable video encoder includes an encoder for selectively using spatial intra prediction to code, on a macroblock adaptive basis, an enhancement layer residue generated between an enhancement layer macroblock and a corresponding upsampled base layer macroblock.
Abstract:
Methods and systems for transportation and processing of a cryogenic fluid. The system includes a floating liquefaction unit receiving a gas from a source, a shuttle vessel for carrying liquefied gas away from the liquefaction unit, a floating regasification unit for receiving the liquefied gas from the vessel, regasifying the liquefied gas and providing the gas to a distribution system.
Abstract:
A method of forming a fitting assembly in a filament-reinforced pressure vessel, and a pressure vessel having a fitting assembly secured therein. In the method, a first fitting portion is bonded to an inner surface of a thermoplastic liner in a fluid tight manner. A layer of commingled reinforcing filaments and plastic material is applied to an outer surface of the thermoplastic liner to form a vessel wall. A portion of the vessel wall adjacent to the opening bounded by the fluid-tight seal between the first fitting portion and the inner surface of the thermoplastic liner is removed. Then, a second fitting portion is bonded to the first fitting portion so as to define a port for access into the interior of the vessel.
Abstract:
A tank container for transporting and storing liquefied gas, including a tank that includes a cylinder body and two heads arranged oppositely and welded with both ends of the cylinder body; and a frame assembly for fixing and supporting said tank, which includes a front frame and a rear frame fixed at both ends of said tank respectively. The cylinder body has a shell thickness δ substantially equal to: Pc×Di/(2σb/Ks−Pc), wherein, Pc is the calculated pressure of the tank, required by the transported liquefied gas, Di is the inner diameter of the cylinder body, σb is the maximum tensile strength of material of the cylinder body at a normal temperature, and Ks is a safety factor no larger than 2.6. The tank container is designed through stress analysis methods, the safeness of which has been verified.
Abstract:
A pressure tank includes a liner separated into a cap and a main body. A shell covers the outer surface of the liner. The shell is formed of a fiber reinforced plastic. A heat exchanger is arranged in the liner. A header is connected to the heat exchanger. The heat exchanger is supported on the liner by fastening the header to the cap or the main body.
Abstract:
A cryogenic storage tank having an inner vessel disposed within an outer vessel. The fluid flow lines that extend from the interior of the inner vessel to the exterior of the outer vessel have both corrugated-and non-corrugated portions. The corrugated portions advantageously facilitate the bending of the fluid flow lines into a desired orientation while the non-corrugated portions provide rigidity and stiffness for the fluid flow lines.
Abstract:
This invention relates to the field of the recovery of methane gas from a coal mine and conventional Natural Gas. More particularly, it involves an apparatus and method for economically recovering methane gas from a coal mine and transporting the methane gas to an end user or other location. The invention further provides an apparatus and method for economically recovering Natural Gas that is stranded due to high impurities that requires processing and/or Natural Gas that is not located near a pipeline. According to a first preferred embodiment of the invention, such methods for recovering and transporting gas comprise (a) transferring gas from a producing well to a first subterranean capacitor and storing the gas in said capacitor and (b) transferring gas from the first subterranean capacitor to a second subterranean capacitor, a pipeline, an end user, a gas processor, or a power plant.
Abstract:
A gaseous fuel storage system for a vehicle is disclosed. The fuel storage system can be installed as a modular unit in the vehicle. The fuel storage system is pivotable relative to the vehicle to allow easy accessibility to the storage tanks without requiring the storage tanks to be unmounted from the vehicle. The fuel storage system also provides protection for the storage tanks through the use of shielding and energy absorbing material.
Abstract:
A fluid storage and delivery apparatus may include a fluid container and a vent valve for releasing fluid from the fluid container. The vent valve may include a vent valve body formed from a single piece, and a vent valve inlet and vent valve outlet coupled to the single-piece vent valve body. The apparatus may also include one or more coupling members at least partially defining a fluid passageway between the vent valve and the fluid container.
Abstract:
The methods and apparatus for transporting compressed gas includes a gas storage system having a plurality of pipes connected by a manifold whereby the gas storage system is designed to operate in the range of the optimum compressibility factor for a given composition of gas. The pipe for the gas storage system is preferably large diameter pipe made of a high strength material whereby a low temperature is selected which can be withstood by the material of the pipe. Knowing the compressibility factor of the gas, the temperature, and the diameter of the pipe, the wall thickness of the pipe is calculated for the pressure range of the gas at the selected temperature. The gas storage system may either be modular or be part of the structure of a vehicle for transporting the gas. The gas storage system further includes enclosing the pipes in an enclosure having a nitrogen atmosphere. A displacement fluid may be used to offload the gas from the gas storage system. A vehicle with the gas storage system designed for a particular composition gas produced at a given location is used to transport gas from that producing location to a receiving station miles from the producing location.