Abstract:
Various systems and methods for implementing free-form drawing for health applications are described herein. A system for implementing a health application includes a user interface module to receive, at a user device, a plurality of parameters including a free-form gesture path, the free-form gesture path representing an air gesture performed by a user of the user device; and a control module to adjust a fitness routine of the user based on the plurality of parameters.
Abstract:
Methods of using subcutaneously implantable sensor devices and associated systems having a communication module that is controlled based upon the detection of a predetermined chemical agent.
Abstract:
Systems and methods may provide for obtaining first wearable sensor data associated with a first fitness session and first fitness equipment and obtaining second wearable sensor data associated with a second fitness session and second fitness equipment. Additionally, an effort normalization may be conducted between one or more settings of the second fitness equipment and one or more settings of the first fitness equipment based on the first wearable sensor data and the second wearable sensor data. In one example, a user prompt is generated during the second fitness session via a user interface of one or more of the second fitness equipment or a wearable device based on the normalization.
Abstract:
A method is described to facilitate behavioral nudging. The method includes receiving sensory data from one or more wearable devices, determining a context for a user wearing the one or more wearable devices based on the sensory data, determining a mechanism to nudge the user to reinforce user behavior based on stored preferences and policies and transmitting a nudging stimulus to at least one of the wearable devices via the determined mechanism to provide a notification to the user.
Abstract:
Systems and methods may provide for conducting an interest analysis of data associated with a user, wherein the interest analysis distinguishes between abstract interests and social interests. Additionally, one or more recommendations may be generated for the user based on the interest analysis and a current context of the user, wherein the one or more recommendations may be presented to the user. In one example, the abstract interests identify types of topics and types of objects, and the social interests identify types of social groups.
Abstract:
Apparatus, systems, and/or methods may provide power management. An attachment portion may secure an apparatus to a user. In one example, an apparatus includes a wearable wristwatch having a wristband attachment portion. A context corresponding to a user state may be determined from context data such as, for example, sensor context data, database context data, companion context data, and/or user context data. The context may be used to specify a power mode applicable to a part of the apparatus to manage power.
Abstract:
Systems and methods may provide for identifying sensor data associated with an intraoral device and analyzing a chemical composition of an ingestible product based on the sensor data. Additionally, a notification may be selectively generated based on the chemical composition. In one example, analyzing the chemical composition includes determining the level of one or more of an allergen, a toxin or a predetermined substance in the ingestible product.
Abstract:
Techniques for device connections using touch gestures are described. A method may comprise receiving a first gesture input at a first electronic device, receiving, at the first electronic device, a second gesture input from a second computing device in proximity to the first computing device, comparing the first gesture input and the second gesture input, and establishing a wireless connection between the first computing device and the second computing device if a similarity of the first gesture input and the second gesture input meets or exceeds a similarity threshold based on the comparing. Other embodiments are described and claimed.
Abstract:
Embodiments of the invention describe a system to efficiently execute gesture recognition algorithms. Embodiments of the invention describe a power efficient staged gesture recognition pipeline including multimodal interaction detection, context based optimized recognition, and context based optimized training and continuous learning. Embodiments of the invention further describe a system to accommodate many types of algorithms depending on the type of gesture that is needed in any particular situation. Examples of recognition algorithms include but are not limited to, HMM for complex dynamic gestures (e.g. write a number in the air), Decision Trees (DT) for static poses, peak detection for coarse shake/whack gestures or inertial methods (INS) for pitch/roll detection.
Abstract:
An apparatus, method and other techniques for a wearable navigation device are described. For example, an apparatus may comprise a wristband comprising a plurality of haptic feedback devices arranged around a circumference of the wristband and logic to wirelessly receive navigation information from a computing device and to output the navigation information using one or more of the plurality of haptic feedback devices, the output comprising a mechanical representation of the navigation information. Other embodiments are described and claimed.