Abstract:
A multi-functional cyclic siloxane compound (A), a siloxane-based (co)polymer prepared from the compound (A), or compound (A) and at least one of a Si monomer having organic bridges (B), an acyclic alkoxy silane monomer (C), and a linear siloxane monomer (D); and a process for preparing a dielectric film using the polymer. The siloxane compound of the present invention is highly reactive, so the polymer prepared from the compound is excellent in mechanical properties, thermal stability and crack resistance, and has a low dielectric constant resulting from compatibility with conventional pore-generating materials. Furthermore, a low content of carbon and high content of SiO2 enhance its applicability to the process of producing a semiconductor, wherein it finds great use as a dielectric film.
Abstract:
A multi-functional cyclic siloxane compound (A), a siloxane-based (co)polymer prepared from the compound (A), or compound (A) and at least one of a Si monomer having organic bridges (B), an acyclic alkoxy silane monomer (C), and a linear siloxane monomer (D); and a process for preparing a dielectric film using the polymer. The siloxane compound of the present invention is highly reactive, so the polymer prepared from the compound is excellent in mechanical properties, thermal stability and crack resistance, and has a low dielectric constant resulting from compatibility with conventional pore-generating materials. Furthermore, a low content of carbon and high content of SiO2 enhance its applicability to the process of producing a semiconductor, wherein it finds great use as a dielectric film.
Abstract:
There is provided a MTCMOS flip-flop configured to operate at high speed and to reduce leakage current while realizing a retention function in a sleep mode. The MTCMOS flip-flop may include a signal generator adapted to output an internal clock signal or a sleep mode control signal based on changes in a retention signal and an external clock signal, a master latch adapted to latch an input signal and to output a master latch output signal based on the internal clock signal, and a slave latch connected to an actual ground and adapted to latch the master latch signal, to output a slave latch output signal under control of the internal clock signal, and to maintain the latched signal under control of the sleep mode control signal in the sleep mode.
Abstract:
A method and apparatus for providing a mobile service with the use of a code pattern is disclosed In one embodiment, the method comprising: taking a photograph of a code pattern image, decoding the photographed code pattern image so as to obtain code information, extracting uniform resource locator (URL) information corresponding to the code information, transmitting a content information request message to a service provider server corresponding to the URL information, and receiving content information corresponding to the URL information from the service provider server. According to embodiments of the present invention, it is possible to provide various and convenient mobile services to mobile terminal users using a mobile terminal, having a camera, and a code pattern containing the URL information.
Abstract:
The pesent invention discloses a memory module and a signal line arrangement method thereof. The memory module includes memory chips mounted on both sidees in a mirror form; and a printed circuit board (PCB) having same signal applying contact pads arranged on both sodes which same signal applying balls of the memory chips contact in the mirror form, wherein a via is formed at a location close to the same signal applying contact pad of one side among the same signal applying contact pads arranged on both sides in the mirror form, the via connecting the other side to the signal line of one side, and a signal transmitted from the other side is connected to a contact junction, the contact junction is connected to the same signal applying contact pad of the other side, the contact junction is connected to the via of the other side, and the via of one side is connected to the same signal applying contact pad of one side.
Abstract:
Provided is a polymer electrolyte membrane including an inorganic nanoparticle bonded with a proton-conducting group, a solid acid and a proton-conducting polymer. The inorganic nanoparticle bonded with the proton-conducting group may be obtained by reacting a compound including a proton-conducting group with a metal precursor. The polymer electrolyte membrane has significantly enhanced proton conductivity and reduced methanol crossover.
Abstract:
A solid acid including a carbon nano tube (CNT), a spacer group combined with the CNT and an ionically conductive functional group connected to the spacer group. A polymer electrolyte membrane may include the same composition, and may be used in a fuel cell. The polymer electrolyte membrane using the solid acid has excellent ionic conductivity and suppresses the cross-over of methanol. The polymer electrolyte membrane is used as an electrolyte membrane of a fuel cell, for example, a direct methanol fuel cell.
Abstract:
The semiconductor memory system includes a memory controller, N system data buses, and first through P-th memory module groups. The N system data buses are connected to the memory controller and respectively have a width of M/N bits. The first through P-th memory module groups are connected to the N system data buses and respectively have N memory modules. In each of the first through P-th memory module groups, a different one of the N system data buses is connected to each of the N memory modules, and each of the N system data buses has a data bus width of M/N bits. The first through P-th memory module groups are operated in response to first through P-th corresponding chip select signals. M is the bit-width of an entire system data bus of the semiconductor memory system. The N system data buses are wired such that data transmission times are the same from each N memory modules that operate in response to the same chip select signal to the memory controller.
Abstract:
Provided are a dendrimer solid acid and a polymer electrolyte membrane using the same. The polymer electrolyte membrane includes a macromolecule of a dendrimer solid acid having ionically conductive terminal groups at the surface thereof and a minimum amount of ionically conductive terminal groups required for ionic conduction, thus suppressing swelling and allowing a uniform distribution of the dendrimer solid acid, thereby improving ionic conductivity. Since the number of ionically conductive terminal groups in the polymer electrolyte membrane is minimized and the polymer matrix in which swelling is suppressed is used, methanol crossover and difficulties of outflow due to a large volume may be reduced, and a macromolecule of the dendrimer solid acid having the ionically conductive terminal groups on the surface thereof is uniformly distributed. Accordingly, ionic conductivity is high and thus, the polymer electrolyte membrane shows good ionic conductivity even in non-humidified conditions.
Abstract:
An oligomer solid acid and a polymer electrolyte membrane using the same. The polymer electrolyte membrane includes a macromolecule of oligomer solid acid having an ionically conductive terminal group at its terminal end and the minimum amount of ionically conductive terminal groups required for ion conduction, thus suppressing swelling and allowing a uniform distribution of the oligomer solid acid, thereby improving ionic conductivity. Since the number of ionically conductive terminal groups in the polymer electrolyte membrane is minimized and the polymer matrix in which swelling is suppressed is used, methanol crossover and difficulties of outflow due to a large volume are minimized, and a macromolecule of the oligomer solid acid having the ionically conductive terminal groups on the surface thereof is uniformly distributed. Accordingly, ionic conductivity is high and thus, the polymer electrolyte membrane shows good ionic conductivity even in low humidity conditions.