摘要:
This description relates to a gate electrode of a field effect transistor. An exemplary structure for a field effect transistor includes a substrate; a gate electrode over the substrate including a first top surface and a sidewall; a source/drain (S/D) region at least partially disposed in the substrate on one side of the gate electrode; a spacer on the sidewall distributed between the gate electrode and the S/D region; and a contact etch stop layer (CESL) adjacent to the spacer and further comprising a portion extending over the S/D region, wherein the portion has a second top surface substantially coplanar with the first top surface.
摘要:
A method of forming an integrated circuit structure includes providing a substrate; forming a first hard mask layer over the substrate; forming a second hard mask layer over the first hard mask layer; patterning the second hard mask layer to form a hard mask; and, after the step of patterning the second hard mask layer, baking the substrate, the first hard mask layer, and the hard mask. After the step of baking, a spacer layer is formed, which includes a first portion on a top of the hard mask, and a second portion and a third portion on opposite sidewalls of the hard mask. The method further includes removing the first portion of the spacer layer; removing the hard mask; and using the second portion and the third portion of the spacer layer as masks to pattern the first hard mask layer.
摘要:
This description relates to a method including forming an interlayer dielectric (ILD) layer and a dummy gate structure over a substrate and forming a cavity in a top portion of the ILD layer. The method further includes forming a protective layer to fill the cavity. The method further includes planarizing the protective layer. A top surface of the planarized protective layer is level with a top surface of the dummy gate structure. This description also relates to a semiconductor device including first and second gate structures and an ILD layer formed on a substrate. The semiconductor device further includes a protective layer formed on the ILD layer, the protective layer having a different etch selectivity than the ILD layer, where a top surface of the protective layer is level with the top surfaces of the first and second gate structures.
摘要:
A method for fabricating a silicon nitride gap-filling layer is provided. A pre-multi-step formation process is performed to form a stacked layer constituting as a dense film on a substrate. Then, a post-single step deposition process is conducted to form a cap layer constituting as a sparse film on the stacked layer, wherein the cap layer has a thickness of at least 10% of the total film thickness.
摘要:
The present disclosure provides for methods of fabricating a semiconductor device and such a device. A method includes providing a substrate including at least two isolation features, forming a fin substrate above the substrate and between the at least two isolation features, forming a silicon liner over the fin substrate, and oxidizing the silicon liner to form a silicon oxide liner over the fin substrate.
摘要:
A method of forming a shallow trench isolation region is provided. The method includes providing a semiconductor substrate comprising a top surface; forming an opening extending from the top surface into the semiconductor substrate; performing a conformal deposition method to fill a dielectric material into the opening; performing a first treatment on the dielectric material, wherein the first treatment provides an energy high enough for breaking bonds in the dielectric material; and performing a steam anneal on the dielectric material.
摘要:
A method of forming an integrated circuit structure includes providing a semiconductor substrate including a top surface; forming an opening extending from the top surface into the semiconductor substrate; and performing a first deposition step to fill a first dielectric material into the opening. The first dielectric material is then recessed. A second deposition step is performed to fill a remaining portion of the opening with a second dielectric material. The second dielectric material is denser than the first dielectric material. The second dielectric material is recessed until a top surface of the second dielectric material is lower than the top surface of the semiconductor substrate.
摘要:
Preventing a chemical vapor deposition (CVD) chamber from particle contamination in which a higher low-frequency radio frequency (LFRF) power and longer process time are provided to vacate the chamber and perform a pre-heat process. Following that, a pre-oxide layer is formed on the chamber wall, while a high-frequency radio frequency bias is provided to the chamber. The high-power LFRF is continuously provided to the chamber to sustain the temperature of the chamber, and then a main oxide layer deposition process is performed. The method is able to form an oxide layer of better quality on a CVD chamber wall, so as to solve the particle problem in the prior art. Therefore, yield is improved and the maintenance cost is reduced.
摘要:
A method for forming a gate and a method for etching a conductive layer are provided. First, a substrate is provided, including a dielectric layer and a conductive layer on its surface in order. Subsequently, a patterned silicon nitride layer is formed on the conductive layer as a hard mask, and the hydrogen concentration of the patterned silicon nitride layer is more than 1022 atoms/cm3. Thereafter, the conductive layer and the dielectric layer are etched utilizing the hard mask as a mask. Finally, an etching solution is utilized to remove the hard mask.
摘要:
A method of forming a shallow trench isolation region is provided. The method includes providing a semiconductor substrate comprising a top surface; forming an opening extending from the top surface into the semiconductor substrate; performing a conformal deposition method to fill a dielectric material into the opening; performing a first treatment on the dielectric material, wherein the first treatment provides an energy high enough for breaking bonds in the dielectric material; and performing a steam anneal on the dielectric material.