Abstract:
Techniques to dynamically manage wireless connections using a coverage database are described. For example, a mobile computing device may comprise a connection management module operative to dynamically select a wireless connection technology based on a location of the mobile computing device and information from a coverage database, and to initiate a wireless connection using the selected wireless connection technology. Other embodiments are described and claimed.
Abstract:
A multi-strike ballast to ignite an electrodless lamp is disclosed, and includes an inverter circuit, an output voltage detection circuit (OVDC), and an inverter shutdown circuit. The inverter circuit, upon activation, sends an ignition pulse to the electrodeless lamp. The inverter circuit shut downs upon receiving a deactivation signal, and activates upon receiving an activation signal, triggering another ignition pulse. The OVDC detects an output voltage across the lamp. The inverter shutdown circuit includes a multi-strike diac and receives the detected output voltage. The multi-strike diac breaks upon the output voltage reaching a predetermined level. In response, a deactivation signal is sent to the inverter circuit. The multi-strike diac turns off upon the output voltage falling below the predetermined level. In response, an activation signal is sent to the inverter circuit, triggering a further ignition pulse. The process repeats, providing multiple ignition pulses to the lamp.
Abstract:
Methods of modifying a patterned semiconductor substrate are presented including: providing a patterned semiconductor substrate surface including a dielectric region and a conductive region; and applying an amphiphilic surface modifier to the dielectric region to modify the dielectric region. In some embodiments, modifying the dielectric region includes modifying a wetting angle of the dielectric region. In some embodiments, modifying the wetting angle includes making a surface of the dielectric region hydrophilic. In some embodiments, methods further include applying an aqueous solution to the patterned semiconductor substrate surface. In some embodiments, the conductive region is selectively enhanced by the aqueous solution. In some embodiments, methods further include providing the dielectric region formed of a low-k dielectric material. In some embodiments, applying the amphiphilic surface modifier modifies an interaction of the low-k dielectric region with a subsequent process.
Abstract:
Durable porous low refractive index coatings, methods and compositions for forming the porous low refractive index coatings are provided. The method comprises coating a substrate with a sol formulation comprising a silane-based binder having one or more reactive groups and silica based nanoparticles and annealing the coated substrate. The silane-based binder comprises from about 30 wt. % to about 70 wt. % ash contribution in the total ash content of the sol formulation. Porous coatings formed according to the embodiments described herein demonstrate good optical properties (e.g., a low refractive index) while maintaining good mechanical durability due to the presence of a high amount of binder and a closed pore structure.
Abstract:
Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed by depositing a metal-containing material on a silicon-containing material. The metal-containing material may be oxidized to form a resistive-switching metal oxide. The silicon in the silicon-containing material reacts with the metal in the metal-containing material when heat is applied. This forms a metal silicide lower electrode for the nonvolatile memory element. An upper electrode may be deposited on top of the metal oxide. Because the silicon in the silicon-containing layer reacts with some of the metal in the metal-containing layer, the resistive-switching metal oxide that is formed is metal deficient when compared to a stoichiometric metal oxide formed from the same metal.
Abstract:
A ballast that selectively operates multiple lamps is provided. The ballast includes a switching network, capable of operating in a number of switching configurations. The ballast also includes a control circuit, and two lamp control switches. The control circuit is connected to the switching network, and provides respective control signals via respective output terminals as a function of the switching configuration of the switching network. Each lamp control switch is in parallel with its lamp and is connected to a respective output terminal. The first lamp control switch is connected to a ballast power supply, and either provides power to the first lamp or does not, depending on the first control signal. The second lamp control switch is connected to the first lamp control switch and to ground, and either provides power to the second lamp or does not, depending on the second control signal.
Abstract:
A multi-strike ballast to ignite an electrodless lamp is disclosed, and includes an inverter circuit, an output voltage detection circuit (OVDC), and an inverter shutdown circuit. The inverter circuit, upon activation, sends an ignition pulse to the electrodeless lamp. The inverter circuit shut downs upon receiving a deactivation signal, and activates upon receiving an activation signal, triggering another ignition pulse. The OVDC detects an output voltage across the lamp. The inverter shutdown circuit includes a multi-strike diac and receives the detected output voltage. The multi-strike diac breaks upon the output voltage reaching a predetermined level. In response, a deactivation signal is sent to the inverter circuit. The multi-strike diac turns off upon the output voltage falling below the predetermined level. In response, an activation signal is sent to the inverter circuit, triggering a further ignition pulse. The process repeats, providing multiple ignition pulses to the lamp.
Abstract:
A network device provides a selector list that includes indices of child nexthops associated with the network device, where each of the child nexthops is associated with a corresponding child link provided in an aggregated bundle of child links. The network device also receives an indication of a failure of a child link in the aggregated bundle of child links, and removes, from the selector list, an index of a child nexthop associated with the failed child link. The network device further receives probabilities associated with the child links of the aggregated bundle of child links. Each of the probabilities indicates a probability of a packet exiting the network device on a child link. The network device also creates a distribution table based on the probabilities associated with the child links, and rearranges values provided in the distribution table.
Abstract:
Embodiments of the current invention describe methods of forming different types of crystalline silicon based solar cells that can be combinatorially varied and evaluated. Examples of these different types of solar cells include front and back contact silicon based solar cells, all-back contact solar cells and selective emitter solar cells. These methodologies all incorporate the formation of site-isolated regions using a combinatorial processing tool and the use of these site-isolated regions to form the solar cell area. Therefore, multiple solar cells may be rapidly formed on a single crystalline silicon substrate for use in combinatorial methodologies. Any of the individual processes of the methods described may be varied combinatorially to test varied process conditions or materials.
Abstract:
Embodiments of the current invention describe a cleaning solution for the removal of high dose implanted photoresist, along with methods of applying the cleaning solution to remove the high dose implanted photoresist and combinatorially developing the cleaning solution.