Abstract:
Battery 1, comprising at least a battery cell 2, which is arranged within a battery housing 3, characterized in that the battery housing 3 is partially filled with a cooling liquid 4. Method for cooling of said battery, wherein at least a portion of the cooling liquid 4 is evaporated.
Abstract:
An energy storage apparatus including at least first and second energy storage devices to supply, or also consume, an electric current. At least the second energy storage device is an electrochemical energy storage device. A control device controls at least supply of electric current by at least one of the energy storage devices and can also control consumption of electric current by at least one of the energy storage devices. Energy density of the second energy storage device is higher than energy density of the first energy storage device; energy density is defined as the ratio between energy that can be stored in the energy storage device in a charged state and weight of the energy storage device. The control device can trigger the first energy storage device to supply electric current when the electric current exceeds a predetermined threshold value for the current strength.
Abstract:
The invention relates to a battery housing (1) for receiving one or more battery cells (2), comprising a cover surface (3), a floor surface (4), and a sealing plate (5) disposed between the cover surface and the floor surface. The invention further relates to a retaining frame (10) for a battery cell (2), comprising a floor part (11), a cover part (12), and a sealing part (12) disposed between the floor part and the cover part.
Abstract:
The present invention relates to an accumulator with extended durability. The invention is described in relation to a lithium-ion-accumulator for supplying a motor vehicle drive. However, it should be noted that the invention will also be applicable for batteries without lithium and/or independent from motor vehicles.
Abstract:
The invention relates to a battery cell (1) particularly of a prismatic or cylindrical design, comprising at least two electrode stacks (2), at least one current conductor connected to an electrode stack (2), a jacket (4) that at least partially encloses the electrode stack (2), at least one current conductor (3) extending partially out of the jacket (4), characterized in that a heat conducting plate (5) is arranged between two electrode stacks (2).
Abstract:
Electrochemical cell comprising a positive and a negative elecrode and a layer of an inorganic substance arranged between the electrodes, characterized in that the layer is coated with a polyetherimide on one or both sides.
Abstract:
The task at hand is achieved by a method for operating a battery having at least one galvanic cell. The at least one galvanic cell is subjected at least temporally to an examination, particularly at a predetermined operating state of the battery or the galvanic cell.
Abstract:
The invention relates to a galvanic cell (1, 10) which comprises an electrode stack (5). Said stack comprises at least one especially flat anode electrode (2), at least one especially flat cathode electrode (3), and at least one especially flat separator (4) which is interposed between said electrodes (3, 4). The invention is characterized in that the outer contour of the separator (4) has at least one cut-out section (42a, 42b) which is offset inwards with respect to said outer contour.
Abstract:
The invention relates to a battery system comprising at least one battery. According to the invention, provisions are made that said battery system comprises at least one Peltier element, which is used for cooling and/or for heating at least one battery.
Abstract:
An accumulator comprises at least one galvanic cell and a receiving device for supporting the galvanic cell(s) of the accumulator. The receiving device comprises at least one protecting wall for receiving energy by means of elastic and/or plastic deformation. The protecting wall encases the at least one galvanic cell at least partially and has a thickness which is at least partially less than about 1/10 of the characteristic edge length of the at least one galvanic cell. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.