摘要:
A light emitting device includes: at least one light emitting component (LEC) comprising a light-emitting face having a longest linear dimension D1; at least one wavelength-converting consolidated monolithic component (WCC) having a light-receiving face, a light-emitting face, and a peripheral edge. The WCC is radiationally linked to and spaced apart from the LEC at a distance D2, D2 being less than D1, wherein a projection edge of the light-emitting face of the LEC and the peripheral edge of the WCC define a shortest distance D3 therebetween, wherein a surface area of the light-receiving face of the WCC is at least 120% of that of the light-emitting face of the LEC, and the LEC and WCC are positioned relative to each other to satisfy D3/D2≧1.
摘要:
A phosphor adhesive sheet includes a phosphor layer containing a phosphor and an adhesive layer laminated on one surface in a thickness direction of the phosphor layer. The adhesive layer is formed of a silicone resin composition having both thermoplastic and thermosetting properties.
摘要:
Some embodiments provide luminescent ceramics which have a lower amount of dopant than conventional luminescent ceramics. In some embodiments, the luminescent ceramic comprises a host material comprising a rare earth element and at least one rare earth dopant, wherein the rare earth dopant may be about 0.01% to 0.5% of the rare earth atoms present in the material. Some embodiments provide luminescent ceramic comprising: a polycrystalline phosphor represented by the formula (A1-xEx)3B5O12. Some embodiments provide a light-emitting device comprising a luminescent ceramic disclosed herein.
摘要:
Disclosed herein are lighting apparatuses having a light source, a first phosphor, and a second phosphor, wherein the lighting apparatuses exhibit increased R9 values. In some embodiments, the light source is configured to emit radiation having a wavelength of peak emission between about 495 nm and about 500 nm. The first phosphor may have a first wavelength of peak emission between about 495 nm and about 600 nm. The second phosphor may be represented by the formula RE2-x-yCaMg2Si3O12:Cex,Ay. In an embodiment, RE is a rare earth metal; A is a co-dopant, x is greater than 0 and less than about 1.0; and y is greater than 0 and less than about 0.2. Also disclosed are phosphor compositions including the first phosphor and the second phosphor, and methods of using the same.
摘要:
Disclosed herein are phosphor compositions having high gadolinium concentrations. Some embodiments include a thermally stable ceramic body comprising an emissive layer, wherein said emissive layer comprises a compound represented by the formula (A1-x-zGdxDz)3B5O12, wherein: D is a first dopant selected from the group consisting of Nd, Er, Eu, Mn, Cr, Yb, Sm, Tb, Ce, Pr, Dy, Ho, Lu and combinations thereof; A is selected from the group consisting of Y, Lu, Ca, La, Tb, and combinations thereof; B is selected from the group consisting of Al, Mg, Si, Ga, In, and combinations thereof; x is in the range of about 0.20 and about 0.80; and z is in the range of about 0.001 and about 0.10. Also disclosed are thermally stable ceramic bodies that can include the composition of formula I. Methods of making the ceramic body and a lighting device including the ceramic body are also disclosed.
摘要:
Disclosed herein are processes for making a plurality of substantially phase-pure metal oxide particles, the particles comprising a garnet structure, the process comprising: subjecting a dispersion of precursors to a solvothermal treatment to form a garnet intermediate and applying a flow-based thermochemical process to said garnet intermediate.
摘要:
Disclosed herein is a method of increasing the luminescence efficiency of a translucent phosphor ceramic. Other embodiments are methods of manufacturing a phosphor translucent ceramic having increased luminescence. Another embodiment is a light emitting device comprising a phosphor translucent ceramic made by one of these methods.
摘要:
A light emitting device comprising a light emitting component that emits light with a first peak wavelength, and at least one sintered ceramic plate over the light emitting component is described. The at least one sintered ceramic plate is capable of absorbing at least a portion of the light emitted from said light emitting component and emitting light of a second peak wavelength, and has a total light transmittance at the second peak wavelength of greater than about 40%. A method for improving the luminance intensity of a light emitting device comprising providing a light emitting component and positioning at least one translucent sintered ceramic plate described above over the light emitting component is also disclosed.
摘要:
Disclosed herein is a method of increasing the luminescence efficiency of a translucent phosphor ceramic. Other embodiments are methods of manufacturing a phosphor translucent ceramic having increased luminescence. Another embodiment is a light emitting device comprising a phosphor translucent ceramic made by one of these methods.
摘要:
A component for a light-emitting device includes a sealing resin layer that is capable of sealing in a light emitting diode, a fluorescent layer that is formed on one face of the sealing resin layer and is capable of emitting fluorescent light, and a reflection layer that is provided on the other face of the sealing resin layer so as to avoid a region where the sealing resin layer seals in the light emitting diode and is capable of reflecting the light.