Abstract:
A nonvolatile semiconductor memory device comprising a main memory cell array and a spare memory cell array, capable of freely accessing data in the spare memory cell array irrespective of the physical addresses of the spare memory cell array, and a method thereof are disclosed. The logical addresses of the spare memory cell array are assigned prior to the logical addresses of the main memory cell array in response to a first control signal, and data stored in the spare memory cell array is read earlier than data in the main memory cell array.
Abstract:
A non-volatile semiconductor memory device including a memory cell array having a plurality of memory cells coupled to a plurality of bitlines and wordlines, each memory cell being programmed to one of plurality of data storage states. A node is connected to a selected bitline responsive to a storage state in a selected memory cell. A plurality of latched registers is connected to the node to store and output data bits corresponding the storage state, the data bits being assigned to the selected bitline. A circuit is adapted to precharge the selected bitline before sensing the selected memory cell and is adapted to equalize the selected bitline and the node after sensing the selected memory cell.
Abstract:
Driving methods of a nonvolatile memory device are provided. The driving method includes providing a start pulse adjusted based on a previous write operation to a resistive memory cell to write data, verifying whether the data has accurately been written using the start pulse, and executing a write operation on the resistive memory cell by an incremental one-way write method or a decremental one-way write method according to the verify result. Related nonvolatile memory devices are also provided.
Abstract:
A resistive memory device includes a resistive memory cell array, an output circuit and an input circuit. The resistive memory cell array includes a plurality of memory cells that are coupled to bitlines. The output circuit generates a sensing output signal during a write operation by sensing a bitline voltage, and generates output data during a read operation by sensing the bitline voltage. The input circuit controls the bitline voltage based on input data for the write operation, and limits the bitline voltage in response to the sensing output signal during the write operation. The memory cells are protected by effectually limiting bitline voltage.
Abstract:
A semiconductor memory device includes a memory cell array which includes a plurality of unit memory cells, where each of the unit memory cells comprises complementary first and second floating body transistor capacitor-less memory cells. A logic value written into and read from each unit memory cell is defined by a difference in threshold voltage states of the first and second floating body transistor capacitorless memory cells.
Abstract:
Flash memory devices are provided including a plurality of layers stacked vertically. Each of the plurality of layers include a plurality of memory cells. A row decoder is electrically coupled to the plurality of layers and configured to supply a wordline voltage to the plurality of layers. Memory cells provided in at least two layers of the plurality of layers belong to a same memory block and wordlines associated with the memory cells in the at least two layers of the plurality of layers are electrically coupled.
Abstract:
A NAND EEPROM having a shielded bit line architecture reduces supply voltage and ground noise resulting from charging or discharging bit lines. The EEPROM has a PMOS pull-up transistor and an NMOS pull down transistor connected to a virtual power node. A control circuit for charging or discharging bit lines controls the gate voltage of the PMOS or NMOS transistor to limit peak current when charging or discharging bit lines via the virtual power node. In particular, the control circuit operates the PMOS or NMOS transistor in a non-saturation mode to limit current. One such control circuit creates a current mirror or applies a reference voltage to control gate voltages. A programming method sets up bit lines by pre-charging unselected bit lines via the PMOS pull-up transistor having controlled gate voltage while latches in the programming circuitry charge or discharge selected bit lines according to respective data bits being stored. Another bit line setup includes two stages. A first stage pre-charges all bit lines via PMOS pull-up, and the second stage uses the latches to discharge or leave charged the selected bit lines depending on respective data bits being stored. The gate voltages of NMOS transistors in the programming circuitry can be controlled to reduce noise caused by discharging selected bit lines through the latches.
Abstract:
An electrically erasable programmable non-volatile semiconductor memory device. The semiconductor memory device includes a memory cell array comprising a plurality of memory blocks, each memory block comprising a plurality of memory cells, a dummy memory cell, and a select gate transistor. Transfer transistors each having a current path connected between a corresponding wordline enable signal line and a corresponding wordline are controlled by an output of a block selection circuit. The transfer transistors include a dummy transfer transistor electrically coupled to the dummy memory cell, and configured to transmit a dummy wordline enable signal.
Abstract:
A semiconductor memory device having a first memory cell array block including a memory cell having a floating body, the memory cell coupled to a word line, a first bit line, and a first source line, a second memory cell array block including a reference memory cell having a floating body, the reference memory cell coupled to a reference word line, a second bit line, and a second source line, a first isolation gate portion configured to selectively transmit a signal between the first bit line and at least one of a sense bit line and an inverted sense bit line, a second isolation gate portion configured to selectively transmit a signal between the second bit line and at least one of the sense bit lines, and a sense amplifier configured to amplify voltages of the sense bit line and the inverted sense bit line to first and second sense amplifying voltage levels.
Abstract:
An electrically erasable programmable non-volatile semiconductor memory device. The semiconductor memory device includes a memory cell array comprising a plurality of memory blocks, each memory block comprising a plurality of memory cells, a dummy memory cell, and a select gate transistor. Transfer transistors each having a current path connected between a corresponding wordline enable signal line and a corresponding wordline are controlled by an output of a block selection circuit. The transfer transistors include a dummy transfer transistor electrically coupled to the dummy memory cell, and configured to transmit a dummy wordline enable signal.