Abstract:
The present invention provides a memory apparatus capable of causing a gradual resistance change for information processing in an analog manner to a synaptic element for implementing a neuromorphic system. To this end, the present invention provides a memory apparatus including: a memory array including a plurality of memory cells capable of selectively storing logic states and a plurality of bit lines and word lines connected to the plurality of memory cells; a controller for controlling a writing step and a reading step; a writing unit; and a reading unit, wherein the controller selects, in the writing step, one or more memory cells from among the plurality of memory cells through the writing unit, sequentially applies a writing voltage thereto to allow the logic states to be written therein, and applies, in the reading step, a reading voltage to the one or more memory cells, which are selected to have the logic states written therein, through the reading unit so as to determine synaptic weights through a sum of currents flowing through the one or more memory cells so that the selected one or more memory cells are allowed to be recognized to operate as one synaptic element. The present invention also provides a method for determining a synaptic weight in a memory apparatus including a memory array including a plurality of memory cells capable of selectively storing logic states, bit lines and word lines connected to the plurality of memory cells, the method including: (a) selecting one or more memory cells from among the plurality of memory cells, and sequentially applying a writing voltage to write logic states therein; (b) applying a reading voltage to the one or more memory cells that has been selected to have the logic states written therein; and (c) determining, by the applied reading voltage, a synaptic weight through a sum of currents flowing through the one or more memory cells that has been selected to have the logic states written therein, wherein the selected one or more memory cells are recognized to operate as one synaptic element.
Abstract:
A memory system according to one embodiment includes a memory device including a memory cell with a variable resistance value and a first controller, and a second controller. The first controller is configured to compare first read data read from the memory cell when a first voltage is applied to the memory cell with second read data read from the memory cell when a second voltage is applied to the memory cell. The first voltage is different from the second voltage. The first read data has a first value or a second value with the first value being different from the second value. The second read data has the first value or the second value.
Abstract:
A memory device and a method for operating the memory device are provided. A resistive memory cell connected to a first node and configured to include a variable resistive element and an access element for controlling a current flowing through the variable resistive element. A detection circuit detects a threshold voltage of the access element and provides a detection current to a sensing node. A clamping circuit connected between the first node and the sensing node receives a first read voltage and ramps up a voltage of the first node. The first node is discharged by a discharge circuit when the detection current becomes equal to a bit line current flowing through the first node while the clamping circuit ramps up the voltage of the first node. A sense amplifier transitions an output voltage value when a voltage level of the sensing node becomes lower than a reference voltage.
Abstract:
Techniques are provided for managing voltages on memory cells in a cross-point array during a read operation. The techniques apply to vertical layer thyristor memory cells and non-thyristor memory cells. Voltages on selected bitlines (e.g., corresponding to memory cells from which data is to be read), are set to a read voltage level. Voltages on unselected bitlines (e.g., corresponding to memory cells from which data is not to be read and which are not to be disturbed) are set to a de-bias voltage level that is different from the read voltage level.
Abstract:
Devices and methods for determining resistive states of resistive change elements in resistive change element arrays are disclosed. According to some aspects of the present disclosure the devices and methods for determining resistive states of resistive change elements can determine resistive states of resistive change elements by sensing current flow. According to some aspects of the present disclosure the devices and methods for determining resistive states of resistive change elements can determine resistive states of resistive change elements without the need for in situ selection devices or other current controlling devices. According to some aspects of the present disclosure the devices and methods for determining resistive states of resistive change elements can reduce the impact of sneak current when determining resistive states of resistive change elements.
Abstract:
According to one embodiment, a memory device includes a controller; a first electrode and a second electrode connected to the controller; and a variable resistance layer provided between the first electrode and the second electrode. The variable resistance layer has a first structure, and a second structure. The controller configured to be able to perform a first operation of applying a first voltage between the first electrode and the second electrode, a second operation of applying a second voltage between the first electrode and the second electrode and determining whether or not the variable resistance layer has the second structure, and a third operation of applying a third voltage between the first electrode and the second electrode having the interposed variable resistance layer determined to not have the second structure in the second operation.
Abstract:
A selection circuit that selects a memory cell from a memory cell array and a read circuit for reading a resistance state of a resistance change element in the selected memory cell are provided. In memory cells of odd-numbered-layer and even-numbered-layer memory cell arrays that constitute a multilayer memory cell array, each memory cell in any of the layers has a selection element, a first electrode, a first resistance change layer, a second resistance change layer, and a second electrode that are disposed in the same order. Whether the selected memory cell is located in any layer of the multilayer memory cell array, the read circuit applies a voltage to the selected memory cell to perform the reading operation. The voltage applied to the selected memory cell causes the second electrode to become positive with reference to the first electrode in the selected memory cell.
Abstract:
According to one embodiment, a memory device includes a first active area, formed on the substrate, which extends in a third direction. The memory device also includes three gate electrodes, provided on the first active area, which extend in a second direction intersecting the third direction. The memory device also includes at least two or more upper-layer interconnects and at least two or more lower-layer interconnects, provided on the first active area, which extend in a first direction intersecting the second direction and the third direction. The memory device also includes first transistors of three, each of them is provided at the intersection point between the first active area and the three gate electrodes. The memory device also includes the first transistors of three are one device isolation transistor and two cell transistors.
Abstract:
A method, an apparatus, and a device for determining the state of a phase-change memory cell. The method includes the steps of: biasing a cell with a time-varying read voltage (Vread); making a measurement (TM) that satisfies a predetermined condition where the predetermined condition depends on a cell current when the read voltage is applied; and determining a state of the cell based on the measurement.
Abstract:
A semiconductor memory device in accordance with an embodiment includes a plurality of first word lines, a plurality of bit lines, a resistance varying material, a plurality of second word lines and an insulating film. The bit lines intersect the first word lines. The resistance varying material is disposed at respective intersections of the first word lines and the bit lines. The second word lines intersect the bit lines. The insulating film is disposed at respective intersections of the second word lines and the bit lines. One of the first word lines and one of the second word lines are disposed so as to sandwich the bit lines. The second word lines, the bit lines, and the insulating film configure a field-effect transistor at respective intersections of the second word lines and the bit lines. The field-effect transistor and the resistance varying material configure one memory cell.