Abstract:
A system and a method for passivating a surface of a semiconductor. The method includes providing the surface of the semiconductor to a reaction chamber of a reactor, exposing the surface of the semiconductor to a gas-phase metal containing precursor in the reaction chamber and exposing the surface of the semiconductor to a gas-phase chalcogenide containing precursor. The methods also include passivating the surface of the semiconductor using the gas-phase metal containing precursor and the gas-phase chalcogenide containing precursor to form a passivated surface. The system for passivating a surface of a semiconductor may include a reactor, a metal containing precursor source fluidly coupled to the reactor, and a chalcogenide containing precursor source fluidly couple to the reactor, wherein the metal containing precursor source provides a gas-phase metal containing precursor to a reaction chamber of the reactor, and wherein the chalcogenide containing precursor source provides a gas-phase chalcogenide containing precursor to a reaction chamber of the reactor.
Abstract:
Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures are provided. In some embodiments, methods may include contacting a substrate with a first vapor phase reactant comprising a transition metal precursor and contacting the substrate with a second vapor phase reactant comprising an alkyl-hydrazine precursor. In some embodiments, related semiconductor device structures may include a PMOS transistor gate structure, the PMOS transistor gate structure including a transition metal nitride film and a gate dielectric between the transition nitride film and a semiconductor body. The transition metal nitride film includes a predominant (200) crystallographic orientation.
Abstract:
A method for improving source/drain performance through conformal solid state doping and its resulting device are disclosed. Specifically, the doping takes place through an atomic layer deposition of a dopant layer. Embodiments of the invention may allow for an increased doping layer, improved conformality, and reduced defect formation, in comparison to alternate doping methods, such as ion implantation or epitaxial doping.
Abstract:
A method for depositing a thin film onto a substrate is disclosed. In particular, the method forms a transitional metal silicate onto the substrate. The transitional metal silicate may comprise a lanthanum silicate or yttrium silicate, for example. The transitional metal silicate indicates reliability as well as good electrical characteristics for use in a gate dielectric material.
Abstract:
In some aspects, methods of forming a metal chalcogenide thin film are provided. According to some methods, a metal chalcogenide thin film is deposited on a substrate in a reaction space in a cyclical deposition process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase chalcogen reactant. In some aspects, methods of forming three-dimensional structure on a substrate surface are provided. In some embodiments, the method includes forming a metal chalcogenide dielectric layer between a substrate and a conductive layer. In some embodiments the method includes forming an MIS-type contact structure including a metal chalcogenide dielectric layer.
Abstract:
A substrate processing method and apparatus to create a sacrificial masking layer is disclosed. The layer is created by providing a first precursor selected to react with one of a radiation modified and unmodified layer portion and to not react with the other one of the radiation modified and unmodified layer portion on a substrate in a reaction chamber to selectively grow the sacrificial masking layer.
Abstract:
Methods and related solids and systems are described. In some embodiments, methods as described herein can comprise executing a plurality of super cycles. Ones from the plurality of super cycles can comprise a magnesium sub cycle, an aluminum sub cycle, and a zinc sub cycle. At least one super cycle can comprise more than one magnesium sub cycle, aluminum sub cycle, or zinc sub cycle. Thus, layers having a tunable magnesium, aluminum, or zinc composition can be formed.
Abstract:
Methods for forming structures that include forming a heteroepitaxial layer on a substrate are disclosed. The presently disclosed methods comprise epitaxially forming a buffer layer on the substrate. The substrate has a substrate composition. The buffer layer has a buffer layer composition. The buffer layer composition is substantially identical to the substrate composition. The presently disclosed methods further comprise epitaxially forming a heteroepitaxial layer on the buffer layer. The heteroepitaxial layer has a heteroepitaxial layer composition which is different from the substrate composition.
Abstract:
Methods and systems for depositing vanadium and/or indium layers onto a surface of a substrate and structures and devices formed using the methods are disclosed. An exemplary method includes using a cyclical deposition process, depositing a vanadium and/or indium layer onto the surface of the substrate. The cyclical deposition process can include providing a vanadium and/or indium precursor to the reaction chamber and separately providing a reactant to the reaction chamber. The cyclical deposition process may desirably be a thermal cyclical deposition process. Exemplary structures can include field effect transistor structures, such as gate all around structures. The vanadium and/or indium layers can be used, for example, as barrier layers or liners, as work function layers, as dipole shifter layers, or the like.
Abstract:
Methods and systems for depositing threshold voltage shifting layers onto a surface of a substrate and structures and devices formed using the methods are disclosed. An exemplary method includes using a cyclical deposition process, depositing a threshold voltage shifting layer onto a surface of the substrate.